• Attenuating persistent sodium current induced atrial myopathy and fibrillation by preventing mitochondrial oxidative stress

      Avula, Uma Mahesh R; Dridi, Haikel; Chen, Bi-Xing; Yuan, Qi; Katchman, Alexander N; Reiken, Steven R; Desai, Amar D; Parsons, Samantha; Baksh, Haajra; Ma, Elaine; et al. (American Society for Clinical Investigation, 2021-10-28)
      Mechanistically driven therapies for atrial fibrillation (AF), the most common cardiac arrhythmia, are urgently needed, the development of which require improved understanding of the cellular signaling pathways that facilitate the structural and electrophysiological remodeling that occurs in the atria. Similar to humans, increased persistent Na+ current leads to the development of an atrial myopathy and spontaneous and long-lasting episodes of AF in mice. How increased persistent Na+ current causes both structural and electrophysiological remodeling in the atria is unknown. We cross-bred mice expressing human F1759A-NaV1.5 channels with mice expressing human mitochondrial catalase (mCAT). Increased expression of mitochondrial catalase attenuated mitochondrial and cellular reactive oxygen species (ROS), and the structural remodeling that was induced by persistent F1759A-Na+ current. Despite the heterogeneously prolonged atrial action potential, which was unaffected by the reduction in ROS, the incidence of both spontaneous AF and pacing-induced after-depolarizations and AF was substantially reduced. Expression of mitochondrial catalase markedly reduced persistent Na+ current induced ryanodine receptor oxidation and dysfunction. In summary, increased persistent Na+ current in atrial cardiomyocytes, which is observed in patients with AF, induces atrial enlargement, fibrosis, mitochondrial dysmorphology, early after-depolarizations and AF, all of which can be attenuated by resolving mitochondrial oxidative stress.
    • Calcium Signaling Silencing in Atrial Fibrillation: Implications for Atrial Sodium Homeostasis

      Kaplan, Aaron D; Joca, Humberto C; Boyman, Liron; Greiser, Maura (MDPI AG, 2021-09-29)
      Atrial fibrillation (AF) is the most common type of cardiac arrhythmia, affecting more than 33 million people worldwide. Despite important advances in therapy, AF's incidence remains high, and treatment often results in recurrence of the arrhythmia. A better understanding of the cellular and molecular changes that (1) trigger AF and (2) occur after the onset of AF will help to identify novel therapeutic targets. Over the past 20 years, a large body of research has shown that intracellular Ca2+ handling is dramatically altered in AF. While some of these changes are arrhythmogenic, other changes counteract cellular arrhythmogenic mechanisms (Calcium Signaling Silencing). The intracellular Na+ concentration ([Na+])i is a key regulator of intracellular Ca2+ handling in cardiac myocytes. Despite its importance in the regulation of intracellular Ca2+ handling, little is known about [Na+]i, its regulation, and how it might be changed in AF. Previous work suggests that there might be increases in the late component of the atrial Na+ current (INa,L) in AF, suggesting that [Na+]i levels might be high in AF. Indeed, a pharmacological blockade of INa,L has been suggested as a treatment for AF. Here, we review calcium signaling silencing and changes in intracellular Na+ homeostasis during AF. We summarize the proposed arrhythmogenic mechanisms associated with increases in INa,L during AF and discuss the evidence from clinical trials that have tested the pharmacological INa,L blocker ranolazine in the treatment of AF.