Insertional mutagenesis in the zoonotic pathogen Chlamydia caviae
Date
2019Journal
PLoS ONEPublisher
Public Library of ScienceType
Article
Metadata
Show full item recordAbstract
The ability to introduce targeted genetic modifications in microbial genomes has revolutionized our ability to study the role and mode of action of individual bacterial virulence factors. Although the fastidious lifestyle of obligate intracellular bacterial pathogens poses a technical challenge to such manipulations, the last decade has produced significant advances in our ability to conduct molecular genetic analysis in Chlamydia trachomatis, a major bacterial agent of infertility and blindness. Similar approaches have not been established for the closely related veterinary Chlamydia spp., which cause significant economic damage, as well as rare but potentially life-threatening infections in humans. Here we demonstrate the feasibility of conducting site-specific mutagenesis for disrupting virulence genes in C. caviae, an agent of guinea pig inclusion conjunctivitis that was recently identified as a zoonotic agent in cases of severe community-acquired pneumonia. Using this approach, we generated C. caviae mutants deficient for the secreted effector proteins IncA and SinC. We demonstrate that C. caviae IncA plays a role in mediating fusion of the bacteria-containing vacuoles inhabited by C. caviae. Moreover, using a chicken embryo infection model, we provide first evidence for a role of SinC in C. caviae virulence in vivo. Copyright 2019 Filcek et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Sponsors
This work was supported by grants from the National Institutes of Health (RHV: R01AI100759, PMB: STI Cooperative Research Center U19 AI 084044), the European Union's Seventh Framework Program (BSS: PIOF-GA-2013-626116), the Swedish Research Council (BSS: project 2018-02286, MIMS - The Swedish EMBL node for Molecular Medicine: project 2016-06598), and the Kempe foundation (SM: fellowship JCK-1834).Keyword
Chlamydia caviaemolecular genetic analysis
Mutagenesis, Insertional
Mutagenesis, Site-Directed
Genome, Microbial
Virulence Factors
Chlamydia trachomatis
Identifier to cite or link to this item
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074644319&doi=10.1371%2fjournal.pone.0224324&partnerID=40&md5=981a50310312d951056a9f79e91c78dd; http://hdl.handle.net/10713/11429ae974a485f413a2113503eed53cd6c53
10.1371/journal.pone.0224324
Scopus Count
Collections
Related articles
- Site-specific, insertional inactivation of incA in Chlamydia trachomatis using a group II intron.
- Authors: Johnson CM, Fisher DJ
- Issue date: 2013
- Impact of azithromycin resistance mutations on the virulence and fitness of Chlamydia caviae in guinea pigs.
- Authors: Binet R, Bowlin AK, Maurelli AT, Rank RG
- Issue date: 2010 Mar
- Plasmid-cured Chlamydia caviae activates TLR2-dependent signaling and retains virulence in the guinea pig model of genital tract infection.
- Authors: Frazer LC, Darville T, Chandra-Kuntal K, Andrews CW Jr, Zurenski M, Mintus M, AbdelRahman YM, Belland RJ, Ingalls RR, O'Connell CM
- Issue date: 2012
- Use of aminoglycoside 3' adenyltransferase as a selection marker for Chlamydia trachomatis intron-mutagenesis and in vivo intron stability.
- Authors: Lowden NM, Yeruva L, Johnson CM, Bowlin AK, Fisher DJ
- Issue date: 2015 Oct 15
- Use of Group II Intron Technology for Targeted Mutagenesis in Chlamydia trachomatis.
- Authors: Key CE, Fisher DJ
- Issue date: 2017