• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Functional characterization of Myosin Binding Protein-C slow in health and disease

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    GeistHauserman_umaryland_0373D ...
    Size:
    10.02Mb
    Format:
    PDF
    Download
    Author
    Geist Hauserman, Janelle cc
    Advisor
    Kontrogianni-Konstantopoulos, Aikaterini
    Date
    2019
    Embargo until
    03/12/2020
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Myosin Binding Protein-C (MyBP-C) comprises a family of proteins with structural and regulatory roles in muscle. There are three MyBP-C isoforms in the family, encoded by different genes. Although the isoforms share significant structural and sequence homology, slow skeletal MyBP-C (sMyBP-C), encoded by MYBPC1, is unique as it is heavily spliced in both the NH2 and COOH-termini. To study the role of sMyBP-C in healthy, adult skeletal muscles, in vivo gene transfer and CRISPR plasmids were used to knock down sMyBP-C. Decreased sMyBP-C levels resulted in significantly decreased levels of thick, but not thin, filament proteins. The reduced levels of thick filament proteins were accompanied by disorganized A- and M-bands. Moreover, examination of the contractile activity of treated muscles demonstrated that downregulation of sMyBP-C resulted in significantly decreased force production and velocities of contraction and relaxation. In addition to the extensive exon shuffling that takes place in the NH2-terminus of sMyBP-C, it also undergoes PKA and PKC mediated phosphorylation within two motifs, which flank the first Ig domain of the protein. Recombinant NH2-terminal sMyBP-C phosphomimetic peptides were tested in co-sedimentation and in vitro motility assays, indicating that phosphorylation of sMyBP-C variants regulates actomyosin binding and sliding velocity. Mutations in MYBPC1 have been implicated in the development of distal arthrogryposis, while four recently discovered mutations (Y247H, E248K, L259P, and L263R) co-segregate with the development of a new myopathy characterized by muscle weakness, hypotonia, skeletal deformities, and tremor. In vitro studies and computational modeling suggest altered myosin binding and/or protein instability for the four mutations. Further in vivo evaluation of the E248K mutation in a heterozygous knock-in mouse model revealed significant biochemical, morphological, and behavioral deficits compared to wild type littermates. Additionally, functional assessment of heterozygous E248K muscles demonstrated decreased force and power production, as well as decreased cross bridge cycling kinetics, indicating the tremor may begin at the level of the sarcomere. My studies therefore reveal that sMyBP-C has important structural and regulatory roles within the sarcomere, is modulated through phosphorylation, and that novel MYBPC1 mutations lead to the development of myopathy and tremor that is of myogenic origin.
    Description
    2019
    Biochemistry and Molecular Biology
    University of Maryland, Baltimore
    Ph.D.
    Keyword
    CRISPR
    myosin binding protein-C
    Gene Knockdown Techniques
    Muscle, Skeletal
    Tremor
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/10903
    Collections
    Theses and Dissertations School of Medicine
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.