Stratification of amyotrophic lateral sclerosis patients: A crowdsourcing approach
Date
2019Journal
Scientific ReportsPublisher
Nature Publishing GroupType
Article
Metadata
Show full item recordAbstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease where substantial heterogeneity in clinical presentation urgently requires a better stratification of patients for the development of drug trials and clinical care. In this study we explored stratification through a crowdsourcing approach, the DREAM Prize4Life ALS Stratification Challenge. Using data from >10,000 patients from ALS clinical trials and 1479 patients from community-based patient registers, more than 30 teams developed new approaches for machine learning and clustering, outperforming the best current predictions of disease outcome. We propose a new method to integrate and analyze patient clusters across methods, showing a clear pattern of consistent and clinically relevant sub-groups of patients that also enabled the reliable classification of new patients. Our analyses reveal novel insights in ALS and describe for the first time the potential of a crowdsourcing to uncover hidden patient sub-populations, and to accelerate disease understanding and therapeutic development. Copyright The Author(s) 2019.Keyword
DREAM Prize4Life ALS Stratification Challengestratification of patients
Amyotrophic Laterial Sclerosis
Crowdsourcing--methods
Identifier to cite or link to this item
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060520844&doi=10.1038%2fs41598-018-36873-4&partnerID=40&md5=cee2822d9e7d404d4b5ec2728f2e6fcd; http://hdl.handle.net/10713/10764ae974a485f413a2113503eed53cd6c53
10.1038/s41598-018-36873-4
Scopus Count
Collections
Related articles
- Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression.
- Authors: Küffner R, Zach N, Norel R, Hawe J, Schoenfeld D, Wang L, Li G, Fang L, Mackey L, Hardiman O, Cudkowicz M, Sherman A, Ertaylan G, Grosse-Wentrup M, Hothorn T, van Ligtenberg J, Macke JH, Meyer T, Schölkopf B, Tran L, Vaughan R, Stolovitzky G, Leitner ML
- Issue date: 2015 Jan
- Model-Based and Model-Free Techniques for Amyotrophic Lateral Sclerosis Diagnostic Prediction and Patient Clustering.
- Authors: Tang M, Gao C, Goutman SA, Kalinin A, Mukherjee B, Guan Y, Dinov ID
- Issue date: 2019 Jul
- Complete hazard ranking to analyze right-censored data: An ALS survival study.
- Authors: Huang Z, Zhang H, Boss J, Goutman SA, Mukherjee B, Dinov ID, Guan Y, Pooled Resource Open-Access ALS Clinical Trials Consortium.
- Issue date: 2017 Dec
- Being PRO-ACTive: What can a Clinical Trial Database Reveal About ALS?
- Authors: Zach N, Ennist DL, Taylor AA, Alon H, Sherman A, Kueffner R, Walker J, Sinani E, Katsovskiy I, Cudkowicz M, Leitner ML
- Issue date: 2015 Apr
- Molecular classification of amyotrophic lateral sclerosis by unsupervised clustering of gene expression in motor cortex.
- Authors: Aronica E, Baas F, Iyer A, ten Asbroek AL, Morello G, Cavallaro S
- Issue date: 2015 Feb