Glucose homeostasis following diesel exhaust particulate matter exposure in a lung epithelial cell-specific IKK2-deficient mouse model
Date
2019Journal
Environmental Health PerspectivesPublisher
Public Health Services, US Dept of Health and Human ServicesType
Article
Metadata
Show full item recordAbstract
Background: Pulmonary inflammation is believed to be central to the pathogenesis due to exposure to fine particulate matter with aerodynamic diameter ≤2.5 μm (PM2.5). This central role, however, has not yet been systemically examined. Objective: In the present study, we exploited a lung epithelial cell-specific inhibitor κB kinase 2 (IKK2) knockout mouse model to determine the role of pulmonary inflammation in the pathophysiology due to exposure to diesel exhaust particulate matter (DEP). Methods: SFTPC-rtTA+/−tetO-cre+/−IKK2flox/flox (lung epithelial cell-specific IKK2 knockout, KO) and SFTPC-rtTA+/−tetO-cre+/−IKK2flox/flox (wild-type, tgWT) mice were intratracheally instilled with either vehicle or DEP for 4 months, and their inflammatory response and glucose homeostasis were then assessed. Results: In comparison with tgWT mice, lung epithelial cell-specific IKK2-deficient mice had fewer DEP exposure-induced bronchoalveolar lavage fluid immune cells and proinflammatory cytokines as well as fewer DEP exposure-induced circulating proinflammatory cytokines. Glucose and insulin tolerance tests revealed that lung epithelial cell-specific IKK2 deficiency resulted in markedly less DEP exposure–induced insulin resistance and greater glucose tolerance. Akt phosphorylation analyses of insulin-responsive tissues showed that DEP exposure primarily targeted hepatic insulin sensitivity. Lung epithelial cell–specific IKK2-deficient mice had significantly lower hepatic insulin resistance than tgWT mice had. Furthermore, this difference in insulin resistance was accompanied by consistent differences in hepatic insulin receptor substrate 1 serine phosphorylation and inflammatory marker expression. Discussion: Our findings suggest that in a tissue-specific knockout mouse model, an IKK2-dependent pulmonary inflammatory response was essential for the development of abnormal glucose homeostasis due to exposure to DEP. Copyright 2019, Public Health Services, US Dept of Health and Human Services. All rights reserved.Sponsors
This work was supported by the National Institutes of Health (R01ES024516 to Z.Y.), the American Heart Association (13SDG17070131 to Z.Y.), the National Natural Science Foundation of China (81500216 to C.M.), the 2016 Henan Province Health System Abroad Training Project (2016011 to S. C.), and 2017 Henan Medical Science and Technology Research Project (201702050 to S.C.).Identifier to cite or link to this item
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066818951&doi=10.1289%2fEHP4591&partnerID=40&md5=fab8826e68b30373e995b348fae52ee9; http://hdl.handle.net/10713/10648ae974a485f413a2113503eed53cd6c53
10.1289/EHP4591
Scopus Count
Collections
Related articles
- Concentrated Ambient PM<sub>2.5</sub>-Induced Inflammation and Endothelial Dysfunction in a Murine Model of Neural IKK2 Deficiency.
- Authors: Chen M, Qin X, Qiu L, Chen S, Zhou H, Xu Y, Hu Z, Zhang Y, Cao Q, Ying Z
- Issue date: 2018 Feb 5
- Prenatal exposure to diesel exhaust PM<sub>2.5</sub> causes offspring β cell dysfunction in adulthood.
- Authors: Chen M, Liang S, Qin X, Zhang L, Qiu L, Chen S, Hu Z, Xu Y, Wang W, Zhang Y, Cao Q, Ying Z
- Issue date: 2018 Jul 1
- Toll like receptor-3 priming alters diesel exhaust particle-induced cytokine responses in human bronchial epithelial cells.
- Authors: Bach NS, Låg M, Øvrevik J
- Issue date: 2014 Jul 3
- Exposure to different fractions of diesel exhaust PM<sub>2.5</sub> induces different levels of pulmonary inflammation and acute phase response.
- Authors: Tao S, Xu Y, Chen M, Zhang H, Huang X, Li Z, Pan B, Peng R, Zhu Y, Kan H, Li W, Ying Z
- Issue date: 2021 Mar 1
- In Vivo Protective Effects of Nootkatone against Particles-Induced Lung Injury Caused by Diesel Exhaust Is Mediated via the NF-κB Pathway.
- Authors: Nemmar A, Al-Salam S, Beegam S, Yuvaraju P, Hamadi N, Ali BH
- Issue date: 2018 Feb 26