Show simple item record

dc.contributor.authorWoo, J.
dc.contributor.authorXing, F.
dc.contributor.authorPrince, J.L.
dc.date.accessioned2019-09-13T14:49:32Z
dc.date.available2019-09-13T14:49:32Z
dc.date.issued2019
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85066103401&doi=10.1121%2f1.5103191&partnerID=40&md5=91203651c52ca1d11622dccb66a58ac3
dc.identifier.urihttp://hdl.handle.net/10713/10604
dc.description.abstractThe ability to differentiate post-cancer from healthy tongue muscle coordination patterns is necessary for the advancement of speech motor control theories and for the development of therapeutic and rehabilitative strategies. A deep learning approach is presented to classify two groups using muscle coordination patterns from magnetic resonance imaging (MRI). The proposed method uses tagged-MRI to track the tongue's internal tissue points and atlas-driven non-negative matrix factorization to reduce the dimensionality of the deformation fields. A convolutional neural network is applied to the classification task yielding an accuracy of 96.90%, offering the potential to the development of therapeutic or rehabilitative strategies in speech-related disorders. Copyright 2019 Acoustical Society of America.en_US
dc.description.urihttps://doi.org/10.1121/1.5103191en_US
dc.language.isoen-USen_US
dc.publisherAcoustical Society of Americaen_US
dc.relation.ispartofJournal of the Acoustical Society of America
dc.subjecttagged-MRIen_US
dc.subject.lcshTongue--Canceren_US
dc.subject.lcshTongueen_US
dc.subject.meshRehabilitation of Speech and Language Disordersen_US
dc.subject.meshDeep Learningen_US
dc.titleDifferentiating post-cancer from healthy tongue muscle coordination patterns during speech using deep learningen_US
dc.typeArticleen_US
dc.identifier.doi10.1121/1.5103191
dc.identifier.pmid31153323


This item appears in the following Collection(s)

Show simple item record