Subscribe

Past Issues

Translate ▼

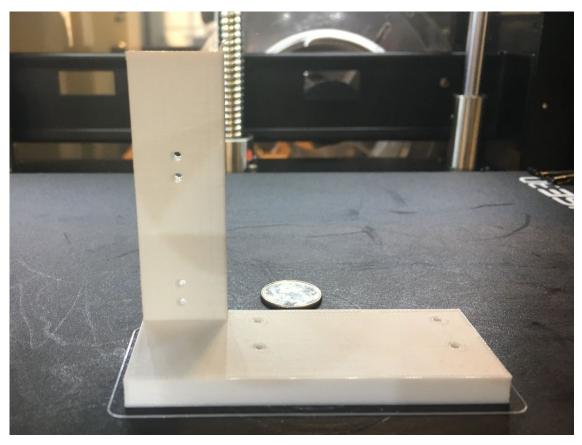
View this email in your browser

Issue number 27

Makers @ HS/HSL: Custom Electrophysiology Gear

Maker:	Hans Moldenhauer
Affiliation:	<u>Department of Physiology, University of Maryland</u> <u>School of Medicine</u>
Project:	Design and 3D print an adapter for a micro manipulator
Used:	Tinkercad.com, Raise3D N2

Hans Moldenhauer, PhD, is a postdoc in <u>Dr. Andrea Meredith's Lab</u>. Her lab is focused on the study of the "BK" subclass of ion channels. Ion channels are proteins that facilitate the movement of ions within cells. The BK ion channel is essential for the regulation of several key physiological processes.

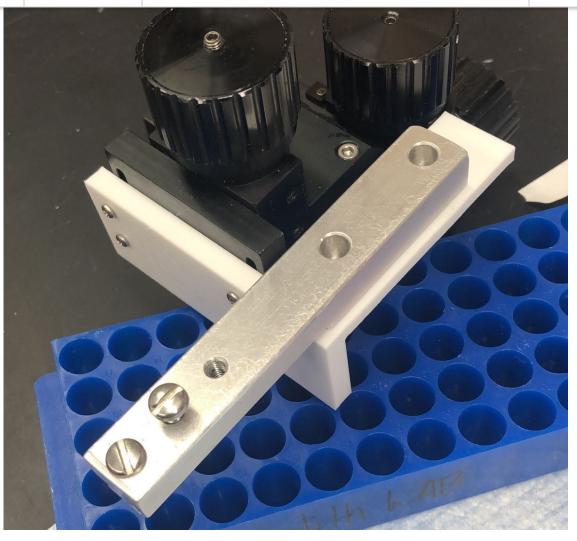

Dr. Moldenhauer is working on a project to understand different mutations in the BK channel. These mutations are linked with neurological diseases like epilepsy and dyskinesia. He observes, "if we can understand the mechanisms by which the mutation affects the normal work of the channel, then we will understand more about the disease".

Dr. Moldenhauer used the HS/HSL Innovation Space to 3D print an adapter needed to adjust a micro manipulator used in his bench science work. He

Subscribe

Past Issues

Translate ▼



The 3D print of Dr. Moldenhauer's micro manipulator adapter design.

Subscribe

Past Issues

Translate ▼

The printed adapter fastened to the micro manipulator. Photo by Hans Moldenhauer.

"The adapter worked very well", he confirms. "I think that 3D printing your own equipment is the way to do it when possible. You can customize the design however you like. And if you don't know how to design something, you can look up tutorials online that will help."

Hans Moldenhauer received a PhD in neuroscience from <u>Universidad de Valparaíso</u>, <u>Chile</u>. In the near future he plans to design a custom cell chamber for his research.

Meet the Makers Speaker Series: Bradley Hennessie, CEO, NextStep Robotics

4/15/2019

Subscribe

Past Issues

Translate ▼

"Research Translation: Lab to Real World"

HS/HSL will host the CEO of Baltimore medical device startup NextStep Robotics for the next Meet the Makers event (RSVP here).

As a former researcher with the University of Maryland School of Medicine and Baltimore VA Medical Center, Mr. Hennessie and his team have developed a personalized robotics-therapy for stroke victims who suffer from "drop foot syndrome".

Mr. Hennessie will discuss his pathway from lab to market, securing funding, and future directions for NextStep Robotics.

Date: Friday, April 19, 2019

Time: 12pm - 1pm

Location: Health Sciences and Human Services Library, Gladhill

Boardroom

* A light lunch will be provided – please RSVP here.

Emerging Tech in the News and Literature

- 1. Robotics for Lower Limb Rehabilitation (nih.gov)
- 2. An Overview of Deep Learning in the Field of Dentistry (nih.gov)

4/15/2019

Subscribe

Past Issues

Translate ▼

Scale (architectmagazine.com)

Upcoming HS/HSL Innovation Space Workshops

Introduction to 3D Printing

Introduction to 3D Modeling

• April 18, 2019

April 29, 2019

Register for our free workshops

New to the HS/HSL Innovation Space?

For more information, visit our webpage at http://www.hshsl.umaryland.edu/services/ispace/.

Copyright © 2019 Health Sciences & Human Services Library, University of Maryland, Baltimore, All rights reserved.

Want to change how you receive these emails? You can <u>update your preferences</u> or <u>unsubscribe from this list</u>

Subscribe Past Issues Translate ▼