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Figure 51: Comparison of tumor weights in the treatment groups 

Mean tumour weights taken upon euthanazing all mice and collecting tumours. *p<0.05, 

**p<0.01. Data are mean (±s.e.). 

 

 

 

 

 

 

 

 

 

Figure 52: Comparison of mice body weights in the treatment groups 

Mice were weighed once a week for the duration of the study.Comparison of body weights is 

shown in figure. 
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4.3.4 Determine the effect of VN/12-1 treatment alone or in combination with CHL on  

SKBR-3 tumor protein expressions 

Immunoblot analysis with the tumor samples revealed that there was an increase in LC3B 

expression in the VN/12-1 treatment groups and to some extent in the ATRA group. However, 

this expression was abolished by the addition of CHL (Figure 53). Expression of Beclin-1 was 

also upregulated as was previously seen in vitro in each of the VN/12-1 treatment groups which 

was abolished by the addition of CHL. To test the effects of the compounds on apoptosis 

markers in vivo, we examined the cleavage of PARP, and expression of Bax, Bad.  PARP 

cleavage was seen in the VN/12-1 (5 mg/kg), combination of VN/12-1 and CHL (for both doses 

of VN/12-1) and in ATRA alone/in combination with CHL.  Higher levels of the cleaved 

fragment (89 kDa) were particularly seen in the treatment groups that involved VN/12-1. Bax 

and Bad levels are both proapoptotic proteins. Their protein expression was elevated in all the 

groups more so in VN/12-1 and ATRA treatment groups. There was a marked upregulation of 

CHOP in the groups that had the combination of VN/12-1 and CHL. Surprisingly, CHOP was 

also seen in the group treated with ATRA. There was no upregulation of CHOP in the group 

treated with VN/12-1 5 mg/kg + CHL. The exact reason for this is not clear at this time. These 

data support our proposed mechanism that autophagy is the initial response of the cells to 

VN/12-1 treatment and inhibition of this autophagy by CHL leads the cells to apoptotic pathway. 

To further evaluate the occurrence of the G1-S transition arrest in vivo, the protein expression of 

various G1/S transition markers was assessed. For this purpose, we examined the expression of 

cyclin D1 in all the treatment groups. Cyclin D1 was downregulated in all the treatment groups 

particularly in the combination of VN/12-1 and CHL. CHL alone was not responsible for any 
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significant downregulation of cyclin D1. These data corroborate the in vivo confirmation of our 

in vitro findings about cell cycle arrest.  

 

Figure 53: Effect of indicated treatments on the protein expressions in vivo 
Western blot analysis of protein expression in SKBR-3 tumors dissected from the mice. 

Autophagy markers (LC3B, Beclin-1), ERS marker (CHOP), Cell cycle marker (cyclin D1), 

Apoptosis markers (Bad, Bax, PARP cleavage) were probed. 
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Summary and conclusions of Specific Aim 3:  

In the toxicity analysis of the compounds, both ATRA and VN/12-1 when used in high 

(10 and 20 mg/kg) and more frequent doses (everyday) resulted in toxicity in mice.  Hence, we 

used the lower (2.5 and 5 mg/kg) doses of each compounds for the combination studies. The 

lower doses of both VN/12-1 (2.5 and 5 mg/kg twice a week) and ATRA (5 mg/kg twice a week) 

were not toxic either alone or in combination with CHL. 

In the in vivo pharmacokinetic analysis following subcutaneous administration of VN/12-

1, there was an initial increase in plasma concentration up to a concentration (Cmax) of 41.38 

µg/ml. The time taken to achieve maximum plasma concentration (tmax) was 2 hours. After 2 

hours the plasma concentration declined exponentially with a mean t1/2 of 6 hours. VN/14-1 was 

not detected in the plasma of mice that were injected with VN/12-1 indicating that VN/12-1 does 

not metabolize to VN/14-1 in vivo and thus its effects should not be attributed to its conversion 

to VN/14-1 in vivo.  

Daily tumor growth was not significantly different between ATRA alone and VN/12-1 

2.5 mg/kg alone (3.9% vs. 3.6%, p = 0.551), but was significantly slower with VN/12-1 5.0 

mg/kg (2.2%, p = 0.001 vs. both ATRA and VN/12-1 2.5 mg/kg). The combination of ATRA 

with CHL did not significantly slow tumor growth over ATRA alone (3.2% vs. 3.9% daily 

growth, p = 0.109). In contrast, the combination of VN/12-1 (either dose) with CHL slowed 

tumor growth compared to treatment with VN/12-1 alone (1.9% vs. 3.6% for the low dose, 1.2% 

vs. 2.2% for the high dose, p = 0.001 for both). The combination of VN/12-1 (at either dose) 

with CHL was better than the combination of ATRA with CHL (p = 0.001 for both 

comparisons). However, this was mostly due to the stronger effect of VN/12-1 compared to the 
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effect of ATRA (as seen in the single-treatment groups), rather to any substantial synergistic 

effects between VN/12-1 and CHL.  

There was a significant reduction in tumor weights of mice in VN/12-1 plus CHL group 

compared to vehicle control (p < 0.05). However, the body weights of the mice did not change in 

any group, suggesting that the treatments did not cause general toxicity in the mice. 

The protein expression in various treatment groups confirmed the findings of in vitro 

experiments. Surprisingly, induction of apoptotic genes- Bad, Bax and activation of PARP 

cleavage is seen in all the treated groups except CHL. Autophagy markers LC3B and Beclin-1 

are upregulated in VN/12-1 treatment groups. CHOP upregulation in the VN/12-1-treated groups 

confirm the irreversible stage of ERS.  
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Thus, the molecular mechanism of action of VN/12-1 in combination with CHL can be 

summarized as below (Figure 54): 

 

Figure 54: Mechanism of action of VN/12-1 in combination with CHL 

VN/12-1 induces ER stress. This leads to inhibition of protein translation leading to 

downregulation of key cell cycle proteins such as cyclin D1. VN/12-1 also inhibits Akt-mTOR 

pathway. Addition of CHL enhances the ER stress and switches it from reversible (protective) 

pathway to irreversible (apoptotic) pathway by upregulation of CHOP. VN/12-1-mediated ER 

stress also activates autophagy. Inhibition of VN/12-1-induced autophagy by CHL potentiates 

apoptosis by activation of caspase 9 and PARP cleavage. 
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5.Overall Conclusions and Future Directions 
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: 

The work outlined here sheds light on the multiple mechanisms of action of a novel 

RAMBA VN/12-1 against ER-α –ve breast cancer cell line SKBR-3. VN/12-1 is a methyl ester 

of VN/14-1. VN/14-1 and other RAMBAs have been licensed by Cancer Research UK for 

clinical development and VN/14-1 is expected to enter clinical trials within a year. It is important 

to gain better understanding of VN/12-1’s mechanism of action and its potential efficacy and 

limitations. Aim 1 described the unexpected finding that VN/12-1, designed as a RAMBA ester, 

remains stable in vitro and does not hydrolyze to its acid VN/14-1. Out of all the compounds 

tested, VN/12-1 is the most potent compound at inhibiting the growth of breast cancer cells in 

the low micromolar range and it was more potent than VN/14-1 and the clinically used 

compounds such as ATRA, letrozole and 4-OHT. Importantly, VN/12-1 is effective against ER-α 

negative breast cancer. There are very few compounds which are active against ER-α negative 

breast cancer. Aim 2 showed that VN/12-1 does not act via the canonical RAR pathway. It was 

further shown that VN/12-1 induces autophagy and ERS and inhibition of autophagy enhances 

the anti-cancer activity of VN/12-1. Aim 3 evaluates the efficacy of VN/12-1 alone or in 

combination with CHL, an inhibitor of autophagy in in vivo model of breast cancer. It was noted 

that VN/12-1 alone was effective in reducing the tumor growth by ~81.4% compared to control. 

This effect was further enhance by the addition of CHL and the combination reduced the tumor 

volume by 96.2% compared to control. 

It is clear that VN/12-1 has at least 3 mechanisms of action: 1) inhibition of retinoic acid 

metabolism, 2) induction of ERS and  3) induction of autophagy. The molecule has at least 2 

cellular targets, CYP26 and a hitherto unidentified target(s) that is responsible for the induction 

of the ERS and autophagy. It appears that VN/12-1’s mechanism of action may depend on the 
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concentration of the molecule being administered. In the low to mid micromolar range, VN/12-1 

seems to induce the protective component (BiP) of ER stress and autophagy. In the high 

micromolar range, the molecule begins to induce the lethal component (CHOP) of ER stress and 

apoptosis. In the low to mid micromolar range (concentration up to 10 µM) the molecule induces 

ERS markers such as BiP, phosphorylation of eIF2α and phosphorylation of PERK. 

Phosphorylation of eIF2α leads to shutdown of protein translation. Whether this shutdown of 

translation is responsible for the downregulation of cyclin D1 is still unclear. This can be 

investigated by doing RT-PCR studies aimed at RNA expression changes of the housekeeping 

genes. There is a possibility that the downregulation of cyclin D1 is due to its increased 

degradation rather than reduced synthesis. This can be determined using proteasome inhibitors to 

determine if the downregulation of cyclin D1 can be reversed. The involvement of ubiquitin-

proteasome pathway is also a likely mechanism of VN/12-1 mediated downregulation of Her-2, 

p70S6K or p-Akt and similar experiments using proteasome inhibitors can help us evaluate this 

mechanism. Another likely mechanism of downregulation of key proteins is Ca2+
  rise following 

VN/12-1-induced ERS leading to activation of calpains [111]. The overlap in concentrations 

causing both ERS and autophagy is a key finding as increases in ERS have been shown to induce 

autophagy [69]. Future studies should certainly investigate the exact molecular cause of ERS 

activation. Increases in ATRA levels have been shown to induce ERS. Whether VN/12-1 

mediated inhibition of ATRA metabolism is the direct cause of VN/12-1 mediated ERS in vivo is 

still unclear. 

It has been shown that the azole antifungal clotrimazole inhibits both SERCA and store 

operated calcium channels (SOC) in the plasma membrane [112]. Whether VN/12-1 works 

through a similar mechanism as clotrimazole, and leads to intracellular increase in Ca2+ levels 
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needs to investigated. Combining VN/12-1 with various anti-oxidants (NaC, BHT) to see if 

VN/12-1 induces any oxidative stress may identify potential molecular targets of VN/12-1. There 

is no reason to believe VN/12-1-induced ERS is a cancer-cell specific target in vitro. However, 

VN/12-1 may exhibit specificity for cells within tumors in vivo as it is well documented that 

these cells utilize the ER stress response to survive under the hypoxic conditions within tumors 

[113]. It should be noted that in all in vivo studies where VN/12-1 was administered in low and 

less frequent doses (2.5 and 5 mg/kg twice a week), no overt signs of toxicity were observed. 

However, significant toxicity was observed in high and more frequent doses (Table 9). The 

doses used in the in vivo studies were given s.c. However, some unpublished data conducted at 

Cancer Research UK did show that the mice tolerate high doses of VN/14-1 (up to 80 

mg/kg/day) when given by oral route.  

One of the most exciting findings of the studies outlined here is VN/12-1’s superiority 

over ATRA in in vivo SKBR-3 tumor xenografts (Figure 48). It appears as though VN/12-1’s 

improved efficacy over ATRA is due to its stability and long half-life. This may also be related 

to VN/12-1’s ability to induce the ERS in cells at concentrations that are achievable in vivo.  

VN/12-1’s ability to act through multiple mechanisms of action means that there are many 

possibilities for it to be combined with other anti-cancer agents. For instance, many molecules 

including naturally dietary compounds and synthetic derivatives as well as histone deacetylase 

inhibitors have been identified that can induce autophagy through various mechanisms of action 

[114]. It is possible that such molecules may act synergistically with VN/12-1 to target the ER 

stress-autophagy pathway. Furthermore, molecules that induce autophagy through mechanisms 

different than that of VN/12-1, or inhibit the survival aspects of the ERS may also have a 
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synergistic effect. Interestingly, 4-OHT has been shown to induce autophagy. 3-MA has been 

shown to potentiate growth inhibitory effects of 4-OHT [115].  

It is clear from this and our previous studies [35, 36, 38, 116], that the construction of an 

azole moiety at C-4 and modification of terminal carboxylic acid moiety of ATRA imparts 

tremendous multiple biological activities compared to ATRA. However, as with our other lead 

RAMBAs, the molecular targets (except CYP26) of VN/12-1 are yet to be identified. We 

envision that this will be achieved with ongoing studies directed at design and synthesis of 

appropriate biotin-RAMBAs conjugates (molecular probes that retain potency in bioassays) for 

use in affinity chromatographic technique of biotinylation, an important molecular tactics for 

identifying target proteins [117]. 

Another direction this project can lead to is synthesis of mutual prodrugs of VN/12-1 and 

autophagy inhibitors (e.g. CHL). If this strategy becomes successful, there will be a better 

compliance with the patients as one mutual prodrug could replace two individual drugs that it is 

made of. 

Collectively, this study provides the first evidence that a RAMBA potently inhibits both 

ER-α positive and negative cell lines and rapidly activates autophagy in these cancer cells and 

that induction of autophagy by VN/12-1 can be exploited as a target to achieve potent anti-breast 

cancer activity. On a broader note, this work reinforces the belief that cancer cells can ward-off 

therapeutic stress, following inhibition of critical oncogenic pathways, by inducing autophagy 

and inhibition of autophagy can be used as a strategy to improve the efficacy of the anti-cancer 

agents. Future therapeutic strategies that aim to inhibit autophagy in cancer cells treated with 

novel RAMBAs, represent a promising approach that will target cancer cells.  
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