

Structure-Based Design of Inhibitors of the McI-1 Oncoprotein

sfletcher@rx.umaryland.edu

Maryanna E. Lanning, Wenbo Yu, Lijia Chen, Jamal Chauhan, Alexander D. MacKerell, Jr., Paul T. Wilder and Steven Fletcher, *

¹Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201; ²Department of Biochemistry, University of Maryland School of Medicine, Baltimore, MD 21201

The Bcl-2 Proteins and Cancer

- The anti-apoptotic Bcl-2 proteins Bcl-x₁ and Mcl-1 are frequently over-expressed in human cancers, including lung, pancreatic and colon cancers, as well as cancers of the blood, such as acute myeloid leukemia (AML).1
- Furthermore, the over-expression of Bcl-x₁ and Mcl-1 contributes to resistance to conventional anti-cancer drugs, such as Taxol.¹
- Expansion of targeted, small-molecule chemical artillery to battle human cancers is urgently required.
- Bcl-x_I and Mcl-1 exert their anti-apoptotic functions through "neutralizing" their pro-apoptotic Bcl-2 counterparts, such as Bak and Bim, by sequestering their helical BH3 "death" domains.2
- This protein—protein interface is an attractive target for structure-based drug design, and the BH3 helix of the pro-apoptotic Bcl-2 proteins provides a rational starting point.
 - Crystal structure of the McI-1–Bim-BH3 complex (PDB ID: 2PQK) highlighting the protein-protein interface: Bim-BH3 helix in green; McI-1 coloured by electrostatic surface potential (greys = hydrophobic, neutral hydrophilic; red = acidic; blue = basic). Hydrophobic residues insert into the p1-p4 sub-pockets.

Current Inhibitors of the Bcl-2 Family

- There are many chemically diverse and selective inhibitors of Bcl-x₁.
- Arguably the most potent and selective inhibitor of Bcl-x₁ is ABT-737, boasting a sub-nanomolar K_i .³
- ABT-263, the orally bioavailable congener of ABT-737, has caused thrombocytopenia in some patients during clinical trials.4
- Dual Bcl-x₁ and Mcl-1 inhibitors, such as TW-37, are presently underoing clinical trials.4
- Selective Mcl-1 inhibitors are beginning to be discovered, although none have progressed to clinical studies.⁵
- The pharmacologic inhibition of Mcl-1 represents a medical unmet need.

Structure-Based Rational Design of 4-Sulfamoyl-1hydroxy-2-naphthoates as Specific Mcl-1 Inhibitors

- Guided by NMR-based fragment screening, Abbvie⁶ and Fesik⁷ have discovered potent inhibitors of Mcl-1.
- The carboxylic acid of the Abbvie and Fesik inhibitors below bind Arg263 on the surface of Mcl-1, while the hydrophobic propyl and 4-chloro-3,5dimethylphenyl groups bind the p1 and p2 sub-pockets, respectively.
- We hypothesized that merging the salicylate moiety of Abbvie's inhibitors with the benzene ring of Fesik's benzothiophenes will deliver a novel 1hydroxy-2-naphthoate scaffold from which Mcl-1 inhibitors could be accessed in just two synthetic steps.
- Sulfamoyl groups may be readily introduced at the 4-position to allow inhibitors to probe deeply into the p2 pocket on the surface of Mcl-1.

Molecular Modelling

 Molecular modeling of compound **1a** ($R^1 = 4$ bromophenyl, $R^2 = H$) with Mcl-1 using the Site Identification by Ligand Competitive Saturation (SILCS)⁸ methodology developed in the MacKerell laboratory at the University of Maryland is shown right.

Synthesis

 The target molecules were prepared according to the expeditious synthetic sequence shown above. Starting from commercially available and cost effective 1-hydroxy-2-naphthoic acid (2), regioselective chlorosulfonylation was accomplished by stirring in chlorosulfonic acid for 1 h at 0° C to furnish 3. Subsequently, reaction of 3 with various anilines and amines delivered the target molecules 1.

acetone

Biological Evaluation of Naphthoates

- A library of 50 compounds was rapidly developed.
- An in vitro fluorescence polarization competition assay confirmed our novel 1-hydroxy-2-naphthoates are effective inhibitors of Mcl-1 (Table below).
- Biphenyl ethers wherein the distal phenyl ring is particularly hydrophobic resulted in potent inhibitors of Mcl-1.
- Double functionalization of the sulfonamide nitrogen afforded even greater inhibition of the oncoprotein.
- Up to 20-fold selectivity for Mcl-1 over Bcl-x, was recorded.
- Limited cell activities were observed, likely due to the charged carboxylic acid impeding cell penetration.

Compound	R ¹	R ²	Κ _i (μ M) C	ompound	R ¹	R ²	Κ_i (μΜ)
1a	ξ — ⟨	{ —Н	1.54 ± 0.47	1f	CI	{ —H	0.095 ± 0.005
1b		§ —H	1.29 ± 0.11	4	₹ — CI	5	0.100 - 0.000
1c	\$	§ —H	1.76 ± 0.18	1g	₹ — CI	ξ <i>—</i> ∕	0.100 ± 0.006
1d	₹ — O	{ —Н	0.361 ± 0.029	1h	§	\$	0.047 ± 0.002
1e	§	§ —H	0.361 ± 0.025	1i	₹ — CI	SE	0.045 ± 0.005

Conclusions and Future Directions

- 4-Sulfamoyl-1-hydroxy-2-naphthoates are potent inhibitors of Mcl-1.
- HSQC NMR experiments have provided orthogonal confirmation our compounds bind Mcl-1 in the hydrophobic crevice.
- In order to acquire cellular activity, carboxylic acid function will be converted into ester prodrugs, particularly acetoxymethyl ester, and bioisosteres, including tetrazole and hydroxyisoxazole functions.

References

- 1. Youle, R. J., Strasser, A. *Nature*. **2008**, *9*, 47–59.
- 2. Sattler, M., Liang, H., Nettesheim, D., Meadows, R.P., Harlan, J. E., Eberstadt, M., Yoon, H.
- S., Shuker, S. B., Chang, B. S., Minn, A. J., et al. *Science* **1997**, *275*, 983–986.
- 3. Wendt, M. D., Elmore, S. W., et al. *J. Med Chem.* **2006**, *49*, 1165–1181.
- 4. Billard, C. Mol. Cancer Ther. 2013, 9, 1691–1700.
- 5. Chen, L., Lanning, M. E. and Fletcher, S. Austin J. Anal. Pharm. Chem. 2014, 1(3):1015.
- 6. Petros, A. M., Swann, S. L., et al., *Bioorg. Med. Chem. Lett.* **2014**, *24*, 1484–1488.
- 7. Friberg, A., Fesik, S. W. et al. J. Med. Chem. 2013, 56, 15–30.
- 8. Lakkaraju, S. K., Yu, W., Raman, E. P., Hershfeld, A. V., Fang, L., Deshpande, D. A., MacKerell, A. D. Jr. *J. Chem. Inf. Model* **2015**, *55*, 700–708.

Funding

