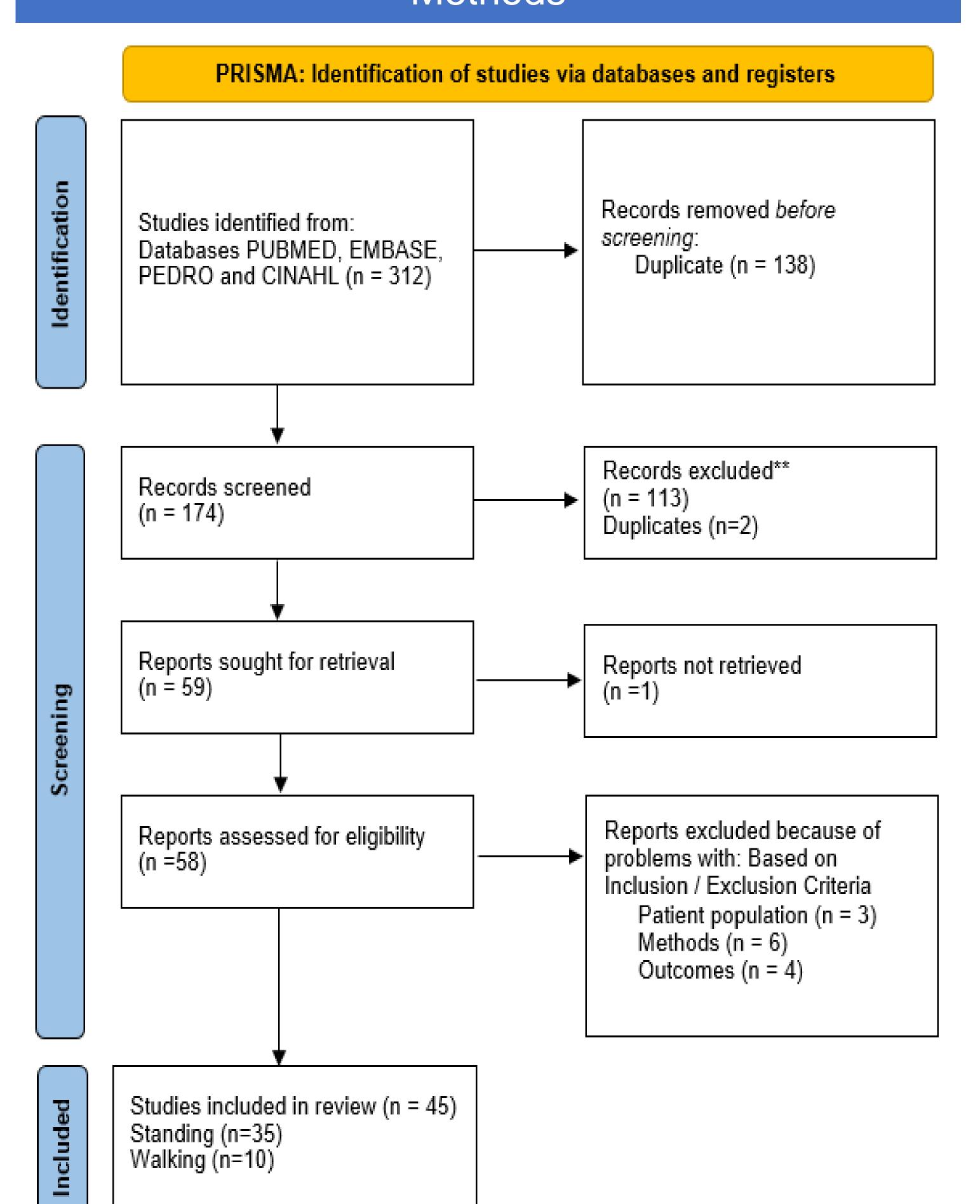
Systematic Review: Effects of external perturbations on reactive balance control in people with stroke Authors: Lateef, S.¹, Lanza, M.B.¹, Shipper, A.², Gray, V.L.¹

1: Department of Physical Therapy and Rehabilitation Sciences, University of Maryland School of Medicine, Baltimore, MD 2: Health and Human Sciences Library, University of Maryland, Baltimore, MD

PHYSICAL THERAPY
AND REHABILITATION SCIENCE

Background


Fall Rates¹

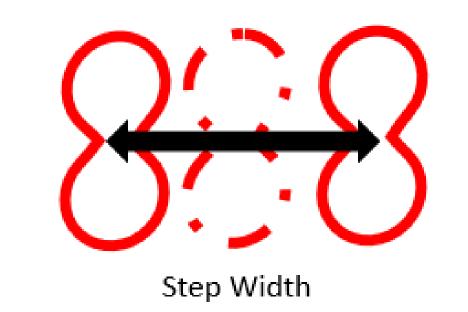
People with Stroke: ~1.4 – 5 falls/ person-year Comparable healthy older adults:~0.65 falls/person-year

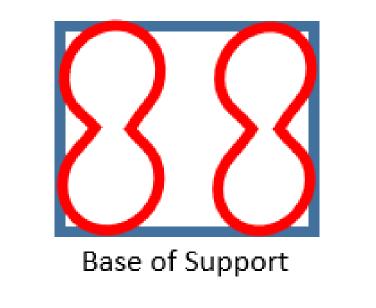
Objectives

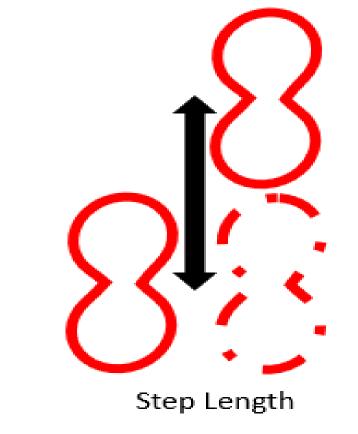
To characterize the impairments in reactive stepping in people with stroke, when they respond to a fall caused by external factors.

Methods

Summary of Results

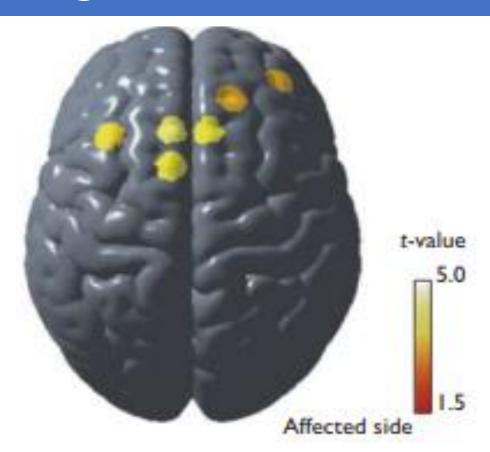

We compared changes in the outcomes listed below, in 3 postural conditions:


- 1. Walking: Reactions to a mid-step perturbation, given while they were walking
- 2. No Step: Reactions when subjects resisted a perturbation, given while they were standing still.
- 3. Single/Multi Step: Reactions when subjects responded to a perturbation, given while they were standing still, with a single step or multiple steps.


Variables	Walking N = 10	No Step N = 16*	Single/ Multi Step N = 21*
Step Width	2,3,4,5	NA	Not examined
Step Length	2,3	NA	20, 21, 22, 23, 24, 25
Number of steps needed to recover balance	2,3	NA	21, 23, 25, 26, 27, 28, 29, 30
Recovery step characteristics: Step initiation, duration, velocity, clearance	Paretic: Delayed ^{6,7}	NA	Paretic: Delayed and Reduced ^{23, 25, 26, 29, 31, 32}
Changes in lower limb joint angles/trunk angles, displacement and velocity	\$,9	1 4,15	21, 22, 24, 33
Electromyography Muscle activation onset, Amplitudes, Strength Response	Paretic delays ¹⁰	Paretic delays ^{16,17,18,19}	Paretic delays ³⁴
	Peak CoM ~ 6MWT/ 10MWT/ FSST/ TUG/ FIM/ One-legged stance test displacement in forward perturbations for the paretic leg ¹¹	predicted FSST scores in	Stepping thresholds ~ FMA ²⁷ ; Fall thresholds ~ BBS/ 6MWT/ 10MWT ³⁵

^{* 45} papers were included in the systematic review. However, some papers examined no-step, single-step and multi-step responses in a single study. For ease of analysis, we included relevant parts of the same paper in the corresponding categories.

Some of the Outcome Variables Examined:



References

For a complete list references and details of papers included in the systematic review please refer to the attached handout.

Key Additional Findings

• Areas of the cortex in people with stroke, that are activated during reactive stepping³⁶.

- ~70% of patients had an impaired reactive stepping response as characterized by a need for assistance, an inability to take a reactive step with either lower limb and multi-step responses^{26, 37}.
- Reactive balance responses vary based on starting position (standing, walking), variations in perturbation intensity, mechanism and direction, and stroke location (Right > Left)^{38,39} and residual sensorimotor impairments.
- Impaired foot cutaneous sensation³¹ may lead to an increase in falls in individuals with stroke.
- Both paretic and non-paretic sides experience deficits. The non-paretic side compensated for the weaker paretic side^{40,41}, with anticipatory activation of the non-paretic¹² side muscles, especially during standing.
- The balance and sequence of muscle activation was preserved after a stroke in both the paretic and non-paretic legs, despite deficits⁴². Both legs can modulate foot placement during balance recovery³.
- Cueing may be used to increase paretic stepping, paretic weight bearing and inter-limb coordination^{43, 44}.
- Biomechanical adaptations and alterations in stepping strategy occur, even with a single repeated exposure⁵ to external perturbations, in people with chronic stroke.

Conclusion

The reactive balance responses characterized by this review, may help determine the most effective strategies to prevent a fall in community ambulatory people with stroke.