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Abstract

Purkinje cells (PCs) are central to cerebellar information coding and appreciation for the
diversity of their firing patterns and molecular profiles is growing. Heterogeneous
subpopulations of PCs have been identified that display differences in intiningjgroperties
without clear mechanistic insights into what underlies the divergence in firing parameters.
Although long used asgeneral PC mask, here it isreporedthat the calcium binding protein
parvalbuminlabek a subpopulationf PCs witha conserveddistribution patternsimilar to
aldolase C.A convolutional neurahetwork was trainetb recognize the parvalbumpositive
subtype and create map$ whole cerebellar distribution. PCs within these areas have
differences in spontaneous fig that can be modified by altering calcium buffer contehich
implicates parvalbumin in setting the spike rate and contributing to pawse behaviorThese
subtypes also show differential responses to potassium and calcium channel blockade,
suggeshg a mechanistic role for variability in PC intrinsic firing. These findings open new
avenues for detailed classification of PC gpbs and prompt further investigation into
determining which subtype(s) are affected by the reported PC decreases within human
postmortem autism brain tissud?art 2 explores serotonin, GABA and dopamine in cortical
regions and the basal ganglia in thenaum postmortem autism brain to quantify differences in

receptor subtypes.
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General Introduction

Clinical features of autisnspectrum disorde(ASD)

A diagnoss of ASD is accompamd by both gifts and challenges and the
description of ASDas afispectrund acknowledges théeterogeneous presentation of
symptoms across individualsThe Amer i can Psychiatric Associ
Statistical Manual (DSM) provides standardized criteria that outlines typical ASD
behaviors that fall into the broad categories of sociamanication and interaction along
with restricted and repetitive patterns of behavior (APA, 2013). Within the category of
restricted and repetitive behavior, sensorimatballenges play a prominent role in
diagnosis. For example, many individuals digpiereotyped and repetitive motor
movements like hand flapping, rocking, pacing, spinning objects, lining up toys, echolalia,
etc. that is often accompanied by hyper hyporeactivity to sensory input, such as
apparent indifference to pain/temperatuchjease responses to specific sounds or texture,
excessive smelling or touching of objects and visual fascination with lights or movement.
Insistence on sameness, inflexible adherence to routines and ritualized behavior is also
representative of this catety, often with apparent extreme distress at small changes in
routines.

Although attention is usually focused on complex behayisuch as social
communication and interactipthere is a large body of research that implicates alterations
in fundamentamotor patterns in ASD. Table 1 outlines core motor behavior deficits that
have been reported and, in collaboration with clinical research psychologist Dr. Fernanda
Orsati, | outlined how these basic motor differences mahatninto challenges with
more complex behaviors that rely on development of fundamental motor skills

(Subramanian et al., 2017)



Table 1.Coresensonmnotor symptoms of ASD thatfluence complex behaviors (adapted

with permission from Subramanian et al. 2017)

Core characteristics
in autism

Primary behaviors
impactedin ASD

Secondary alterdions
examples or possibilities

Selected
References

Eye Movements

Aoculomotor control
with purposeful
movement and its
coordination for
visual processing

Avisual search and
visual attention

AGaze movement
toward people and
objects

Almitation
AJoint attention
Asocial Interactions

Brenner et al., 200

Eye-hand coordination

Acoordination of
visual gaze in
combination with
purposeful
coordinated
movement of hands

AGoaltdirected
behaviorqreaching,
opening, feeding,
pointing, handwriting,
walking, etc.)

ADifferent social activities
(games, playing ball, etc.

AAcademic skills (writing,
reading pointing to right
answer, etc.)

AUsing alternative means t|
communicate that require
pointing

Crippa et al., 2013
Iverson, 2010;
Glazebrook et al.,
2009; Yu & Smith,
2013

Movement

coordination

AMovement
performance
alterations

AMovement preparation
AUpper extremity motor
function (speed and

latency)
AGait and balance
Apostural control and
mobility

AHypotonia

AApraxia

ABody schema
AShared Engagement
Alnitiating a response

Fournier, et al.,
2010; Ming et al.,
2007; Torres et al.
2013

Action chaining
AAnticipate perceptual
representations and

integrate motor
planning with motor
control of action
sequences

AGoal directed
behaviors

ANeed for constant
prompts to play a
board game

AGetting lost in the
middle of an activity

AFoIIowing and engaging
in social interactions
(play, cowversations,
games, etc.),

ALanguage and
communication

Haswell et al., 200
Schmitz et al., 200
Stoit et al., 2013;
Forti et al., 2011

Sensory modulation

and processing

AReaction to multiple
or overwhelming
sensory stimulatin
from the environment

AAvoidance of
environments or
activities that involve
sound/noise, different
textures, light, visual
stimuli, food avoidance

Asensory seeking moto
activities (flapping,
jumping, etc.)

ARestrictive and unusual
interests

AReliance onthe same
routine

ASocial isolation and
withdrawal

AEscape of environments

Aself-stimulatory behaviors

Klintwall et al.,
2011; Tavassoli et
al., 2014; Wiggins
et al., 2009

Inhibition control

AAbility to inhibit a
response to other
extraneous incoming
stimuli while
performing a goal

Almpulsiveness
Asuppressing unwanted
stimuli

Alnhibiting responses
ATask switching

ARepetitive behaviors and
routines

Alnaccuracy (errors) in
performance

Christ et al., 2007;
Geurts et al., 2009
MostertKerckhoffs
etal., 2015




These common underlying elementary motor dysfunction patterns have the
potential to influence many downstream behaviors. For example, Brenner et al. (2007)
discuss how eye tracking and coordinatogulomotor systemsre essential building
blocks for theability of children to engage in imitation, joint attention and, therefore, social
interaction. Voluntary movements during development translate into-dgeated
behaviors that lead to more advanced social interactions. However, individuals with ASD
can beobjectively separatedrom neurotypical individuals solely by quantifying hand
trajectories toward visual stimuli (Torres et al., 2013). The researchers coined these
signature fluctuations in movement Ami cr omec
people with ASD often display during voluntary movements and suggests deficits-in real
time sensory feedback.
The underlying differences in fundamental motor skills during developrasnt
already provingto be important for early diagnosis of ASD and atteatn t o a chi | o
sensory environment may help to mitigate many challenging behaviors that are observed.
The evidence for underlying sensorimotor challenges is robust and diverse, which begs the
guestionof which areaswithin the brain are most responsilite such aheterogeneous

array of symptoms.

Overview of cerebellar circuitrand function

The cerebellum is one region that participates in a wide array of sensorandtor
cognitivebehaviors and is therefore poised to influemany, if not all,of thebehaviors
typical of an ASD diagnosis.Motor development and cognitive developmemy be
fundamentally intertwinednd it has been suggested that the cerebellum plays a role in this
cooperativedevelopment through its eactivation with the prefrontaloctex (Diamond,

2000).



As discussed in the previous section, variability of voluntary movewofemand
trajectories is high in ASD compared to neurotypicals. The cerebellum seems to be crucial
for control of movement, but not for initiation as cerebellar lesions do not abolish
movement, but do result in slow, inaccurate, rough and variable move(Retinson and
Fuchs, 2001).When considering the core motor alterations in ASD provided in Table 1,
the cerebellum, along with the basal ganglia, is known to participate in each of these
fundamental motoskills, perhaps owing to the dense interconmvgtiwith other brain
regions that these two areas shatye movements have a particularly long history in
cerebellar researcHikely due to the well understood circuitry and straightforward
behavioral observationsspecially in relationship to saccad®loda and Fujikado, 1987
Takagietal., 1998 Barashetal., 1999 Guillaumeet al., 2018Soetedjo et al., 20)%nd
eye blink conditioning, a formaf motor learning that is cerebelludependent (for review
see: Bracha et al., 2009) as well as the coordination of eye and hand tracking movements
(Miall et al, 2001).

However, he traditional view of the cerebellum as a purely motor structure has
shifted in recent years, due to increasing evidence of cerebellar participation in cognitive
functionsand advances in mapping of cerebellar circuits to other brain regiumes of the
earliest descriptions details how cerebellar specific lesions can tteaaffective
dysregulation, as well as deficits in language, spatial and executive functions that result in
a diagnosis of Cerebellar Cognitive Affective Syndrom®&chmahmann, 1997;
Schmahmann & Sherman, 1998).

Since thengconsideration of the cerebellum nonmotor behaviordias moved
from the fringe to being considered centr al
Asupervised | earni ng maThisismaioly duekto paralel et al
segregated circuits topographically organized betwibe cerebellum and cortical areas

and cerebellar malfunction in discrete areas has been shown taegtfeative functions,


https://onlinelibrary-wiley-com.ezproxy.bu.edu/doi/full/10.1111/j.1460-9568.2011.07693.x#b108
https://onlinelibrary-wiley-com.ezproxy.bu.edu/doi/full/10.1111/j.1460-9568.2011.07693.x#b7
https://www-ncbi-nlm-nih-gov.ezproxy.bu.edu/pubmed/?term=Guillaume%20A%5BAuthor%5D&cauthor=true&cauthor_uid=30207858

visuospatial functions, working memory, verbal memory, linguistic processing, verbal
fluency, procedural learning, attention, seqcing and emotioBplduc et al., 2011, 2012,
Tedesco, 2011 which can all be impacted in ASD

How exactlythe cerebellum participates in these diverse behaviors is unclear, but
evaluating the macrocircuitry makes it obvious that the cerebellum isly@osmected
with nearly every area of the rest of the brain. Due to this high connectivity with many
regions, the cerebellum is considered a fAhub
throughout the brain (Cole et al., 2009). Figure 1 providesowaerview of this
mecrocircuitry, in which input fran the inferior olive and widespread cortical input is
distributed throughout the cerebellar cortex. As the only output cells of the cerebellar
cortex PCs send their axons to the deep cerebellar nudiah is the output structure of
the cerebellum. Projections mainly get distributed through the thalamus, but also project
to a variety of structures throughout the brain.

Within thecerebellar cortex, the hallmaf&ature of homogenous circuitry can be
appreciated. All regions of the cerebellum display a stereotypical organization of cellular
connectivity, which is highlighted in a sagittal plane (Figure 2) and transverse plane
(Figure 3). PCs are contacted by a single excitatory climbing fiber fromférer olive
and thousands of excitatory parallel fibers from granule cells run through their extensive
dendritic arbors. Basket and stellate cells provide inhibitory input to PCs, while Golgi and

Lugaro cells provide inhibition in the granule celléay
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Sagittal section of cerebellar cortex
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Transverse section of cerebellar cortex
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Cerebellum in ASD

As knowledge of the cerebellum expands to include functional roles imotor
domains as welhs the typical motedomains (Schmahmann, 2Q18& is now clear that
the cerebellum influences a wide range of behaviors relevant #®SBephenotype In
generalthere is consensus that the cerebellum has a magpmrdSD (Hampson and
Blatt, 2015; Wang et al., 2014; Rogers e| 2013; Beckeand Stoodley, 2013; Fatemi et
al.,, 2012). The associations between the various motor and cognitive functions that are
impacted by cerebellar malfunctions and ASD symptoms are striking, however, many

brain regions can participate in &aaf these differerfunctions. Thereforet is important



to consider postmortem and imaging studies that have specifically looked for alterations in
cerebellar circuitry and connectivity with other brain areas.

Aside from the manyerebellar disorders that hagemorbid ASD assomted
symptoms (for review see: Wang et al., 20Bérker and Stoodley013, alteration of
cerebellar circuitry early in development is correlated V8D (Beversdorfet al., 2005;
Courchesne et al., 2001; Hashimoto et al., 1888peropouloset al., 2007) Cerebellar
insult (prenatal stressors, infection, eturing developmerttas @ ASDrisk ratio on par
with twin studies and the highest risk single mutations (Wang et al., 2014). Furthermore,
imaging studiesepeatedly implicate the adyellum in structural differences in ASD,
wherevolumetric differences emge in the early years of life, persist into adulthood and
have been associated with language deficits (for review see: Hampson and Blatt, 2015;
Wang et al., 2014; Becker and Stoggl2013). Importantly, when unbiasedly assessing
the restingstate functional connectome in ASD across the entire brain, the cerebellum
emerged as the only region meeting stringent criteria for significant abnormal connectivity
(Arnold et al., 2019).

These converging lines of evidence from behavioral, lesion and imaging studies
implicate the cerebellum in the development of ASD and highlight the need for a deeper
understanding of how the cerebellumediatessensorimotor and cognitiveehavior. This
will likely be a crucial step toward developing supportASD individuals and points to
the need for understanding the specific cerebellar circuitry deficits that lead to the various

reported differences.

Purkinje neuronsin ASD
Purkinje cells (PCs) aresntral to cerebellar function as the only output cells of the
cerebellar cortexHuman postmortem studies from our laboratory ahérsthave shown

differences in PQiuumber (Skefos et al2014; Whitney et al.2008; Bailey et a).1998;



Bauman et al.1995; Bauman and Kemper, 1985), size (Fatemi et al., 2002) and gene
expression (Soghomonian et 2017; Yip et al.2008; Yip et al., 2007in theASD brain.
In fact, PC dysfunction is the most consisteauropathological finding in ASWith as
many as75% d cases showing reductions (Hampson and Blatt, 2015; Schumann and
Nordahl, 201).

Currently, | am fimlizing a project in which | used laser capture microdissection
to specificallyextract PCs from human postmortem A1>20) and neurotypicgh=19)
cerebellum On average, 1,500 PCs were lgdofrom each case and the transcriptome
analysisdentified 481 differentially expressed genes betwessmeand control PCsThis
includes 57 genes upregulated and 424 downregula#e8in The downreguled gens
are enriched in familiar pathways in ASD genetic analyses, including synapse maturation,
axon extension, axon guidance aseimaphorirplexin guidance signaling Since the
examined cases are adolescents and adults, it is interesting that payipicayly studied
in relationship to development are still impacted after development in ASD. Consequently,
it may be possible to develop treatments to support PC functioning in adults, especially in
relationship to sensorimotor symptoms. Therefore,etstdnding theseeges in PC
functioning has potential importance for the developmeftreatment strategies.

In ASD, many of the genes implicated by genome wide association studies
(GWAS) affect synaptic stdllty and adhesion molecules (Hussmamlet2011; Lin et al.,
2019. Since PCs have hundreds of thousands of synapses, making their dendritic
branching the most complex in the brain, mutations in synaptic proteins may be particularly
detrimental to PC signaling and sundivd heabundant spieson PCanodify their shape
and function in response to stimuli and have been shown to be involved in cerabeiar

learning (Kleim et al., 1998; Kim et al., 2002; Federmeier et al., 2002; Lee et al., 2005).

Therefore, i1tds mmuopsogideh mmechanismdehind thtiB&neasgst i o n

andalterations reported in human postmort&8D studies.
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Many proteins are activity dependent, in that expression levels depend on synaptic
input. For example, parvalbumin expression has been showaaltetezbased on sensory
experience (Dehorter et al., 2015; Donato e28l13; Lagler et al., 2016 Multiple mouse
models ofASD (Gogolla et al., 2009as vell as limited human studies (Hashemi et al.,
2016 Soghomonian et al., 20l%tonverge on decread numbers of parvalbumin
interneurons or decreased expression of parvalbumin. However, it is not clear whether
parvalbumin is directly impacted or whether these decreases stem from reduced activity as
a common thread that leads to decreased parvalbexpiression across animal models
andpotentiallyhumans. Given thatétremaining PCs in ASBre reported thave reluced
parvalbumin expression (Soghomonian et al., 201 importantto understand the role
parvalbumin plays in PC function and haw alteration might be associated with ASD
symptoms.

Due tothe reporteddecrease in parvalbumin expression within PCs of human
postmortem brain tissue, early experiments in my dissertation were centered on quantifying
parvalbumin positive PCs in the cerebellum of a mouse maitlelan ASD associated
mutation Typically, botithe calcium binding proteins parvalbumin and calbindin are used
to label the entirety of the PC population. HoweVelhserved clear and distinct patterns
of expression that alternated between areas of PCs that contain intracellular parvalbumin
and area that lack parvalbumin expression, contrary to numerous reports of ubiquitous
expression(Baimbridge and Miller, 1982; Endo et al., 1985; Christakos et al.; 1987;
Rogers, 1989Scotti and Nitsch, 1992 Celio, 1990; Bastianelli, 2003; Schwaller et al.,
202, Whitney et al., 2008as will be discussed in Chapter 1.

With the knowledge thaehders in cerebellar research have emphasized the need
for additional markers to clarify CsubtypegApps et al., 2018) hypothesized that recent
reports oheterogeneity in intrinsic firing properties across regidiad et al., 2014; Zhou

et al.,, 2014NguyenrMinh et al., 2018 are a direct result of parvalbumin expressioa
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subtype of PCwith the overall hypothesis that parvalbumin positive cells atistanct
subpopulation of PCs Therefore, | classifiedhe intrinsic properties oPCs in each
parvalbumin zoneand show effects of parvalbumin on firif@hapter 2)as well as

differential responses to potassium and calcium chdnoekade(Chapter 3)

Taken togetherthese data providevidence for calcium homeostasis as
underlying driver of the diversity iRC firing phenotypes and provide a novel route for
labeling PC subpopulations that can be utilized fine-mapping of Purkinje cell
microcircuitry. Thesedataalso give support to whais being learnedrom single cell
studies in that even the same cell type can have very different molecular profiles and
physiology. PCs are not all identical andan actually be divided iata host 6

subpopulations, which hdar reaching implications for cerebellar information coding.

Detailed descriptions of cerebellar function and microcircuitry can lead us back to
postmortem research to ask more specific questions in relationship to PC deanehses
expression differences ASD. If there are less PCs in ASD, it will be important to know
which particular subpopulations are impacted and if these differences in number effect the
guantification ofparticular markers, like parvalbumin. garvalbumin is decreased, the
data presented here imply that the remaining PCs in ASD likely cannot maintain higher
bursting behavior and firing rates that are typical of the parvalbumin positive zones and
future work will need to assess how these diffeesnin firing output may impact targets

in the deep cerebellar nuclei.
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Chapter 1:
Parvalbumin, calbindin and aldolase C label distinct subpopulations of

Purkinje Neurons

Introduction

The cerebell umds repeated and precise
insight into the complex relationships between neural circuits, plasticity and behavior. Its

signature stereotyped circuitry was carefully dissected by Sir John Eradsl to his

ge

seminal work AThe Cer ebd&tclsult. eda., 1867)Mmeddor o n a |

his statement, ilt seems | ikely that the
levels of the nervous system to be understood in principle, all thefrarmyperipheral
i nput t o pe reEcclehlerlarB). This optimisticoprediction for a complete
computational model of cerebellar influence on behavior has been challenged by the fact
that, underlying this apparent uniform structure, is a dmaied molecular code that
segregates the cerebellum into an intricate topography of transverse zones, parasagittal
stripes and microzones that are highly conserved between indlisidnd throughout
evolution (br review seeSotelo, 2020Apps et al. 2018; Cerminara et al., 201R\pps
andHawkes, 2009Sillitoe andJoyner, 2007).

Purkinje cells (PCs) act as a template around wbéchbellar circuit architecture
is built (WhiteandSillitoe, 2013; Sotelo, 2004) and demarcate zones and stripes based on
a number of molecular markers that correlate with afferent and efferent topography (Voogd
et al., 2003; Sugiharand Shinoda 2004, 2007). Heterogeneous populations ofifPCs
parasagittallyorientedstripes were described by Gravel et al. (1987)aedoerhaps best
exemplified by labeling of aldolase C (originally zebrin 1), which has served as a useful
landmark to compare other markers that appear complementary (Brochu et al., 1990; Fujita

et al.,, 2014). As aldolase C positive and negative stapeddifferentially contacted
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topographically by cells projecting from the inferior olive and have been shown to have
differences in expression of the glutamate transp&AexT4 (Nagaoet al., 1997; Dehnes
et al., 1998 Hawkes, 2014), it stood to reasdmt these groups of PCs would have
functional physiological differences. Only recently have differences in physiological
properties between PC stripes been reported, notably that aldolase C negative PCs display
higher simple spike firing frequencies thpaositive cells (Xiao et al., 2014; Zhou et al.,
2014; NguyenMinh et al., 2018 However, the underlying mechanisms for these
differences are unresolved because there is no evidence that aldolase C itself is responsible
for the differences and researchlease pointed to the need for additional markers to help
clarify the divergence in physiological parameters (Apps et al., 2018).

Here, it isrepored that the calcium binding proteiparvalbumin(PV) is not
uniformly expressedhroughout the cerebellunbu ratherlabek a subpopulation of PCs
that cut acrosaldolase Gstripes. Additionally, calbindin is differentially labeled by two
different antibodies, suggesting that it may be differentially regulateetaostiationally
or have different isoforms in subpopulationBV and calbindin have been extensively
employed as generBIC markers due to numerous reports of their ubiquitous expression
in the cerebellumBaimbridgeandMiller, 1982; Endo et al., 1985; Christakos et al.; 1987;
Rogers, 1989Scotti and Nitsch, 1992 Celio, 1990; Bastianelli, 2003; Schwaller et al.,
2002 Whitney et al.,, 2008 However, one report in primate cerebellum observed a
proportion of PV negative cells (Fortin et al., 1998) with a similar finding in avian
ceaebellum (Wylie et al., 2011). dhow that, ike markers for stripef?V has a distinct
patern of expression that is conserved between individuals, while calbindin appears
homogeneous throughout lobules untitstaining with other markers reveals unlabeled
cells.

These surprising distribution patterns of calcium binding proteins in the mouse

cerebellum further divide stripes into heterogarse populations and provide multiple
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novel avenues$or exploration to understarttie mechanisms responsible for differential
firing between PCs and moduleBy adding to the repertoire of available markéis tan
segregate PCs into subtypes, finer mapping of cerebellar microcircuitry can be achieved.
Improved understanding of cerebellar microcircuitry can lead to more detailed descriptions
of physiological parameters responsible for appropriate informabaing to the deep

cerebellar nuclei and thereby enhance understanding of cerebellar function.

Methods

Animals

C57BL/6 mice were obtaineffom the animal facility of the University of
Maryland School of Medicine Program in Comparative Medi¢Batimore, MD, USA)
Animals were housed in the animal facility wftke access to food and water on a 12/12
h light/dark cycle. All experiments involving animal procedures were approved by the
Institutional Care and Use Committees (IACUC) of the University of Maryland School of

Medicine and the Hussman Institute for &uot.

Immunohistochemistry

Since PCs are surrounded by dense parvalbumin innervation from nearby basket
cells, the optimal dynamic range of antibody concentration was critical to clearly observe
PV negative cells, as described in Hoffman et al. (2016).N#* DAB, serial 40pum thick
sections (every '§ through the entire cerebelluwf four week old mice (and one
confirmed pattern at P23ere rinsed of glycerol cryoprotectant three times for two
minutes in a scientific microwave (Ted Pella) at 35 degeswl 150 watts (all following
rinses were performed this way). Sections were blocked with 8% donkey serum in TBST

for thirty minutes then incubated in 8% donkey serum TBST and primary antibody
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(1:4,000guinea pigparvalbumin, GP72 Swayfior one hour atoom temperature then 47
hours at 4eC followed by a rinsegquneapi@ hour i
1:600), another rinse, one hour in 1:500 A/B solution (Vector), rinse, twenty minutes in
DAB solution (95mM nickel (ll) sulfate hexahydrat8 ( gma 1067 27 )} ; 0. 55m
diaminobenzidine tetrahydrochloride hydrate (Sigma 32750) and 3% (v/v) hydrogen
peroxide in TBS) and a final rinse before alcohol dehydration, xylene and coverslipped
with DPX.

Fluorescence immunohistochemistry was performedhe same manner with
increasedPV primary concentratiofguinea pigparvalbuminl:2,000 GP72 Swantabbit
calbindin1:5,000 CB38 Swangldolase C1:100 alexa fluor 647 Santa Cree271593,
but after rinsing sections wergcubated in secondary antibodies (donkey-gninea pig
555 1:1,000 Sigm&AB4600298 goat antirabbit 405 InvitrogenA-31559 for three

hours, rinsed, dehydrated in alcohol, xylene and coverslipped with DPX.

Fully automated distribution maps of parvalbuim positive cell types
A. Image Processing

Coronal Nf* DAB stained serial sectionsere imaged with aMicrobrightfield
(MBF) Zeiss, Stereoinvestigator system throughout the entire cerebellum in each of five
mice. Image stacks were collapsed into deep focus files (MBF) at a resolution of 0.25
um/pixel.Sliceswere sectioned at #iin and imaged i20um stackat 1pum intervals. The
digitized images were then uploaded #i f o rGloacEimage processing and
managemenplatform (Aiforia Technologies, Helsinki, Finland) for analysis with deep

learning convolutioal neural network$¢CNN) and supervised learning.

B. Al Model Training Parameters:
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A supervised, multllayered, CNN was trained on annotations from digitized
images to recognize multiple DAB positive cell typesingthe cloudbo ased Ai fori aE
platform. The algorithm was trained on the most diverse and representative images for this
data set. 1images (17/128= 13% of total datasmiipstituted training dataVhen teaching
Al, representaveness of the training slides more critical than the number of training
slides. Therefore, diverse training data were included to capture the variability in
image/staining quality across the entire data set. [§dechog slides with known affacts
and trained the Al model to exclude them from analysis as background.

The Al model consisted of multiple feature layers, containing unique classes that
were annotated for CNN input data. The Al modehgisted of four featurtayers: 1)

Tissue segmentation 2) Purkinje andlecular layertissue subregion segmentations 3)
DAB positive object detector for 3 subclasses within thekiRj# layer segmentation
(parvalbumin positive Purkinje cd#ls, parvalbumin negative Purkinje celland
interneuronsd) DAB positive interneurons were identified usig object detector within

the moleculardyer segmentation. Individual CNNs were trained for each layer using the
image augmentation parameters, perceptive view (field of view), antl demglexity
summarized in Table All four layers were merged into a chained analysis pipeline, where
segmentation results from the first layer are used as a cropping mask in the next layer, and
SO on, to detect and quantify the number of DAB positiVis @gthin either Purkinje or

Molecular layers across totagsue.
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Table 2 Convolutional neural network image augmentation parameters, field of
view, and complexity.

Layer 1: Tissug Layer 2: Purkinje | Layer3: Layer4:
segmentation | and Molecular Purkinje layer | Molecular
layer cells layer cells
segmentation
Scale (max/min) -10/10 -10/10 -10/10 -1/1.01
Aspect Ratio 10 10 10 1
Maximum Shear 10 10 10 1
Luminance -10/10 -10/10 -10/10 -1/1.01
(max/min)
Contrast -10/10 -10/10 -10/10 -1/1.01
(max/min)
Max. white balance| 5 5 5 1
change
Noise 2 2 2 0
Field of View 50.4mm 13.8mmn
Complexity Intermediate | Extra Complex Complex Intermediate

The ground truth, or features used to train the Al model, was annotated for each
layer within thecloudb ased Ai fori aE platform and consti.t
The first feature layer was annotated using semantic segmentation to distinguish the total
tissue from the glass slide. The second feature layer was annotated using semantic
segmentatn to distinguish the Purkinje cell layer from the molecudget within total
tissue. The ground truth for the third layer utilized an object detector with mm 18

diameter foparvalbumin positive Purkinje celidparvalbumin negative Purkinje cells,

18



with 10mm for interneurons within the Purkinje layer. The ground truth for the fourth
feature layer utilized an object detector with arhGdiameter to label interneurons within

the Molecular Layer. Features that were considered artifact (glass slide, debof focus
regions) were annotated as background, and constituted additional input training data for

the multilayered CNN.

Resul ts

Differenti al chemoarchitecture of Purkinje r
Although PV is commonly used as a general PC marker, its exgmasdimited

to distinct sub regions witn cerebellar lobules (Figurg.4Interneurons in the molecular

layer show intense PV stang equally throughout each region, but the PC dendritic trees

that comprise the molecular layer show alternating intensity of PV staining. Upon closer

examination, dendritic areas with lower PV intensity are situated above PCs that do not

contain intracellu a r PV. However, they are surround:eé

innervation from interneurons that contact PC soma and forpiritbeau (Ramon y Cajal,

1911, 1995 (translatdoy Swanson and SwanggpiPalay and Palay, 1974)When high

concentrations of nomary antibody are used, this ring can become thicker and may be

mistaken for intracellular stain, which may be a reason these patterns havedrémrked

in previous reports. Therefore, optimal dynamic range of antibody concentrations

(Hoffman et al.2016)areimportantfor the correctdentification of PC subtypesThere

are examples in the literature of images where PV is not staining intracellularly, however,

it is not discussed as the studies were not focused on PV (Jeong et alL.&9e0al,

2018. PCs not labeled with PV do stain for calbindin, confirming that the lRS6 are

labeled by other markers (Figurg 5
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PV- zone

Figure 5. Parvalbumin-negative zones of Purkinje cells contain calbindin.

A) Sections adjacent to those that had been stained with Ni2+sbgBed the same
pattern of parvalbumupositive zones segregating to the surface of the cerebellum
(PV+ zone in brackets) with negative zones more interior @@ve in brackets) only
having surrounding interneuron input. B) To confirm that Pdhes stai with other
Purkinje cell markers, calbindin was labeled and appears homogeneous through
each region. C) The PV+ zone shows yellow cells, indigatoocalization of PV
and callindin, while the PV zone is only staining for calbindin (reahtracellularly.

Aldolase C striping patterns have been well mapped across cerebellar lobules and are often
used as a landmark to compare other markers that are differentially expressed, while
calbindin is generally employed to capture the entoéthie PC populationTo determine
whether PV is correlated with the known aldolase C stripes, triple immunofluorescence
labeling was performe@Figure §. Unexpectedly, calbindin was not found to label all
PCs, as aldolase fpsitive cells did notshowcalbindin or PV labeling. As this was in
contradiction to other studies showing calbindin expression in both aldolase C positive and
negative PCsWu et al.,, 2019), antibodies from different manufacturers (Swant and
Sigma) were compared and found to preftially label different PCs. The calbindin
stains still labeled each lobule homogeneously, but cells in the same area could have

undetectable levels of one antibody and notatirer. This suggests that each calbindin
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antibody on their own misses maR{s and stereological studies using only calbindin

from one manufacturer may underestimate the PCs present. The Sigma antibody for PV

did not show differences compared to the Swant PV antibody (data not shown).

Fiuge &l dol ase C, calbindin and paryv
Pur ki njTehe elldfst. panel i's a montage o
staining showing the striping patter
panel on the right, | abels a popul at
and colocalizes with parvalbumin (bo

Since PV did not appear to follow the typical striping pattern, a new distribution
map was necessary to understand tiwerall topography of PV+ PCs across lobules.
Furthermore, it was unclear whether these patterns would be conserved across individual
animals (as aldolase C stripes are) or whatbpulations would shift since P&&pression
has been reported to be activity degemt in other brain regions (Philpot et al., 1997; Patz
et al., 2004; Kinney et al., 200€haudhury et al., 2008; Mix et al., 2Q14Therefore,

serial sections throughout the entirety of the cerebellufiv@imice were stained for PV
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(as in Figure 4 and Figurg @nd a subset of these sections were used to train a supervised,
multi-layered, convolutioal n e ur a | net wo Mhs A{ moddl was iatdeFt) .
accurately identify P¥ cells andPV- cells (basd on the ring of input around the soma)

to produce images overlaid witlolor coded cell types (Figure JAWhen adding all PCs
counted in each animal across serial sections and dividing by the total HreRwkinje

layer, PV+PCs represented 96 of the btal population, with PVcells as the remaining
39.7%%6 (Figure 7B). As these are whole cerebellum counts, percentages may vary when
comparing vermis to cerebellar hemispheres or individual lobBlesal sections analyzed
throughout one full cebellumcan be found in Figure &hich inclides PV+interneurons.
These distribution maps show that P¥Cs segregate to the perimeter of each section
(corresponding to thsurface of the cerebellynacross each lobule in the hemisphere as
well as the vamis, however, the vermis has areas mixed with both types. The PV
topography is therefore another conserved distribution pattern, as the patteiressame

across each animal examin@gFb)
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Summary

PV, calbindin and aldolase C are noteo@ressed in PCs, but rather label distinct
subpopulations of PCs with conserved distribution patterns. The PV population segregates
to the perimeter of each section examined and corresponds to the surfacerettbi@uce,
while calbindin is arranged in rows that label all lobules and does not show a distinctive
pattern when examined in isolation. However, when compared to th&mweeiin striping
pattern of aldolase C, calbindin is shown to label distinct ronBQd that cut across

aldolase C stripes.

These results have far reaching implications for cerebellar research, since PCs are
most often pooled together when examining PC properties and mutant animals. As PCs
appear to consist of at least several difiepopulations, more detailed morphological and
physiological parameters may be able to be resolved if PCs are separated based on their
underlying molecular phenotype. Furthermore, when examining mutant animals and
especially when examining propertiesR¥ and calbindin, pooling PCs based on their
appropriate subtype may help to reduce variability and uncover differences that may
otherwise be obscured:his would be particularly relevant when studying knockout mice

for PV and calbindin, as it does noeselikely that all PCs would be affected equally.

It will be important to examine how these distribution patterns integrate into the
established modular connectivity between the inferior olive and deep cerebellar nuclei.
Presumably, PV and calbindgubtypes also follow the afferent and efferent topography
of the zones in which they resid This raises the question of whether or not specific
subpopulations contact specific cells in the deep cerebellar nuclei. For example, do large
excitatory deep cerebellar neurons receive innervation from PV, calbindin and aldolase C

subtypes, or are &y preferentially contacted by a subset of these? Future work may help
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to uncover connectivity patterns, as connectivity will have a direct impact on information

coding from Purkinje cells to deep cerebellar nuclei cells.
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Chapter 2:
Parvalbumin positive Purkinje neuron subtypes have differences in intrinsic firing

properties

Introduction

To understand the cerebellum in autism, the foundational aspects of how it signals
between and across modules must be determined. One question that arises from the
autism literature is t he contribution of PV to PC firing. If the remaining PCs within the
autism cerebellum have lower PV expression (Soghomonian et al., 2017, it will be useful
to understand the potential consequences of its disruption.

PV is known to play a critical role in calcium homeostasis within neurons
(Schwaller, 2020; Arif, 2009; Briuckner, 1993. Calcium dynamics are particularly
important for PCs since they are pacemakertype neurons that fire intri nsically at
consistent rates (Raman and Bean, 1999; Hausser and Clark1997; Nam and Hockberger,
1997; Womack and Khodakhah, 2002), which is partially dependent on calcium activated
potassium channels (Walter et al., 2006). Therefore, PV, which is a calcium binding
protein that sequesters calcium at a relatively slow rate compared to other calcium buffers
(Lee et al., 2000; Schwaller et al., 2002) is in a likely position to affect PC spike rate, which
has been shown to be differential between cerebellar stripes(distinct parasagittal bands
of PCs)and lobules (one of ten cerebellar morphohological folds) (Zhou et al., 2014; Xiao
et al., 2014, Kim et al., 2012).

The PV distribution pattemuncovered in Chapter 1 are a conserved feature of
cerebellar organization in the mouse, since each animal examined had the same pattern of
expression. Given this organization, I hyp
buffering contributes to thedher spike rate observed between PC subtypeseaodded
spontaneous firing frequencie$ PCs fromareas of highntracellular PVexpression

(PV+) andfrom areas that lack P¥xpressior{PV-) to comparegopulations.
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Methods

Animals

C57BL/6 mice were purchased from the Comparative Medicine/Veterinary
Resources at the University of Maryland School of Medicine (Baltimore, MD, USA). PV
tdTomato(Stock #:027395 mice and Pvalk/- (Stock #: 027503)nice were purchased
from the Jacksn Laloratory and offspring were produced from homozygous or
heterozygous breeding painimals were housed in the animal facility wftke access
to food and water on a 12/12 h light/dark cycle. All experiments involving animal
procedures were approved letinstitutional Care and Use Committees (IACUC) of the
University of Maryland School of Medicine and the Hussman Institute for Autism.
Ex vivo slice electrophysiology

Cerebellar slices were prepared fre@6P45C57/BI6 and P3@36 Pvalk/- mice
(modifiedfrom Eguchi et al., 2020 Mice were anesthetized with isoflurane and brains
were removed in warm (34eC) dissecting art.i:
(in mM): 210 sucrose, 2.5 KCI, 1.25 Ngify, 26 NaHCQ, 10 D-glucose, 0.5 ascorbic
acid,2 sodium pyruvate, 3 mymositol, 1 kynurenic acid, 4 Mgeand 0.1 CaGlsaturated
with 95% O2 and 5% CO2. Coronal sections were cut at 300um on a vibratome (Leica
VT1200s) in dissecting aCSF before being transferred to room temperature aCSF
containing(in mM): 126 NacCl, 2.5 KCI, 1 Na#Qs, 24 NaHCO3, 10 Eylucose, 2 MgCGl
and 2.5 CaGlsaturated with 95% 02/5% CO2 and held for at least one hour before
recording.

The loosepatch configuratiomn voltage clamp mode (zero current injectiorgs
used to reably obtain recordings of spontaneous firing by minimizinguisince of the
cell membrane (Perkins, 200@ith borosilicate glass pipettes that had an open pipette

resistance of 2g wi t h sl i ce mai The caugsNBQX (h0ahd),rDIABR e C .
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(50 uM) and picrotoxin (100 uM) were added to pharmacologically block any synaptic
contribution to PC firing. Recordings were collected using an Axon MultiClamp 700B
amplifier (Molecular Devices) filtered at 10 kHz and digitized at 25 kHz with a National
Instruments 150 digitato-analog converter under the control of Igor Pro software
(WaveMetrics, v6.37, 151 Spontaneous (intrinsically generated) firing rates were
guantified over five minutes. Addition of 150uEIGTA/AM was achiged through bath
applicationand recordings were analyzed at Idagty minutesafter applicatior{Atluri &
Regehr, 1996). Analysis of spike rate over time was achieved through generation of
histograms with the Igor software add, NeuroMatic (Rothman & Silver, 2018). After
testfs or nor mal i ty rteseoratMargWhitnay teStiwasditdized té@ compare
differences in mean intrinsic properties between groups, while a paegstdarWilcoxon
matchedpairs signed rank testas used to compare paired cells before atel airug

application with Graph Pad Prism version 8.0.

Reallts

Intrinsic firing properties of Purkinje cells are different acrogsarvalbuminsubtypes

As PCs displayed clear segregation of subtypes based on PV staining and PV is a
well-known calcium buffer that can modify spike rates, we reasoned that PV could be an
underlying mechanism for intrinsic firing differences that have been reported for aldolas
C stripes.While Figure 6shows the cerebellar vermis in order to clearly visualize aldolase
C stripes and compare populatio®s in cerebellar lobulesrus Il were choserfor
electrophysiological recordingbased on theclear segregation of PV fromhe Al
distribution mapsalthough PV cells could also be chosen from crus | at the border
between crus | and crus ICarefully choosing from the areas with yellow labeled (PV+)

or red labeledPV-) cells as shown in FigureA7provided reasonable confidee as to the
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identity of each P@nd keeping recording areas consistent in lobules crus | and crus Il kept
regional variation to a minimum

Unfortunately, atr acquiring mice expressing tdfato under the Py@romoter,
it was found that while most knowr\/+ cell types did express tdmato throughout the
brain Kaiser et al., 2016 PCs did not have detectable tifiato expressiorgure 9.
Consequently, this mouse strain is not useful for identifying PV+ PCs and could not be
used to choose PCs for redmgs. Additionally,due tothe high expression of PV in
dendrites and interneuron innervation to PC soma,-giasting the slices used for
recording did not give reliable delineation of the cell typgéh fluorescence For this
reason| recorded fron a largenumber of cells to assess differences in firing properties
between the two populatiot@ minimize any impact of erroneous inclusion of aldolase C
positive cells. Ithus cannot be ruled out that aldolase C positive cellsneeoeded from
in thegenerallyPV positive aregdut both groups would have reperesentation of aldolase
C PCs

Loose cellattached recordingsere obtained over a period of five minutes for each
cell while blocking synaptic input so that only intrinsic firing propertiesengxamined.
PCs spontaneously display either tonicnfrior burst pause sequences (Llinas and
Sugimori, 1980a,jb)Chang et al., 1993; Womack and Khodakhah, 2002; Lowenstein et al.,
2005; Oldfield et al., 2005; Yartsev et al., 2009; Wang et al., 2002; Williams et al., 2012;
Cheron et al., 2014; Zhou et al., 2015)owever, there is much diversity between PCs in
ternms of firing rate, time between bursts and length of bursts so that eaclispidlys a
pattern that igjuite different from its neighbors. The pattern that each cell displays is
remarkably stable over time. A PC will remairhetit tonically firing at te sameate or
will consistently burst and pause for at least several hours as repopieyvious studies

(Llinas and Sugimori 1980&iausserand Clark, 1997Womack and Khodakhah, 2002
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and confirmed in our laboratoffFigure 1Q. This diversity in spike properties makes
direct comparison more difficult so the spike rate was ordgssed over the time the PC
was actually firingwithin the five minutes total recording tim&Cs n the PV+areas
typically spend less time in the bursting st@®re time pausinggnd are less likely to
fire tonically (100% in figurejor the full five minutes,but when firing they tend to

display a higher firing rate than PCs in #¥¢- areas (Figure )1
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