Effect Sizes and Intervention Research

Philip Osteen, PhD, MSW
Charlotte Bright, PhD, MSW
University of Maryland
January 16, 2010
Agenda

- Why are ES important?
- Types of ES
- Estimating Magnitude of ES
- Calculating ES
Effect sizes are easy!

- Unlike many methods workshops, this relies ONLY on simple mathematical formulae and information already available.

- Calculating effect sizes relies on simple but underused methods.

- By the end of this workshop, you will be able to interpret and report effect sizes in your work.
What is an “effect size”?

- An “effect” is
 - A change or changed state occurring as a direct result of action by somebody or something else (Encarta, 2009)

- “Size”
 - The degree of something in terms of how big or small it is (Encarta, 2009)
What is an “effect size”?

- In statistical inference, the effect size is an estimate of the strength of association between 2 or more variables.

- In and of itself, the effect size is not an indication of causality.
Why are effect sizes important?

- **Power Analysis**
 - Statistical power is the probability of rejecting a false null hypothesis
 - Statistical power is affected by the estimated effect size, α level, and sample size
 - \uparrow ES = \uparrow power
 - \uparrow α level = \uparrow power
 - \uparrow N = \uparrow power
 - Power ≥ 0.80 is the standard
 - Inaccurate estimation of power may lead to wasted resources
Why are effect sizes important?

- Knowing the magnitude of an effect allows us to ascertain the practical significance of statistical significance

 - Does statistical significance always mean practical significance?
 * With sufficient sample size, any effect can reach statistical significance

 - Does statistical non-significance always mean practical non-significance?
 * With insufficient sample size, even the largest effects may not be statistically significant
Types of Effect Sizes

- Pearson’s r and R^2
 - Primarily used in correlation and regression
 - r is the linear association between 2 continuous variables
 \[r_{xy} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{n(\sum x^2 - (\sum x)^2)} \sqrt{n(\sum y^2 - (\sum y)^2)}} \]
 - Standardized ES
 - Bounded between -1 and +1
 - Interpretation: For each 1 SD change in x, there is a “r” SD change in y
 - R^2 (Coefficient of Determination) is the proportion of shared variance between 2 or more variables
 - Standardized ES
 - Bounded between 0 and 1
 - Interpretation: “$R^2 \times 100$” percent of the variance in y can be explained by the variance in $x(s)$
 - Note: May see pseudo-R^2 reported for logistic regression, but interpretation is not equivalent
Types of Effect Sizes

- Odds Ratio (OR)
 - Odds of being in one group relative to the odds of being in a different group
 - Used with categorical outcomes (e.g., χ^2, logistic regression)
 - Ranges from 0 to $+\infty$
 - Values >1 indicate an increase in odds relative to the reference group
 - Values <1 indicate a decrease in odds relative to the reference group
Types of Effect Sizes

- Cohen’s d

\[
d = \frac{\bar{x}_1 - \bar{x}_2}{s_{\text{pooled}}}
\]

- Standardized ES of the difference between 2 means
- Used with t-tests
- d ranges from $-\infty$ to $+\infty$
- Interpretation: The difference in the mean values is “d” standard deviation(s)
- Note: Other ES available when appropriate
 - Hedge’s G – corrects for small sample size
 - Glass’s Δ - corrects for unequal variances
Types of Effect Sizes

- Eta-squared (η^2) and Partial Eta-squared (η_p^2)

\[\eta^2 = \frac{SS_{treatment}}{SS_{total}} \quad \eta_p^2 = \frac{SS_{treatment}}{SS_{treatment} + SS_{Error}} \]

- Standardized ES of the shared variance between a continuous outcome and categorical predictor(s)

- Used with ANOVA family and GLMs

- Bounded between 0 and 1

- Interpretation: "$\eta^2(x \times 100)$" percent of the variance in y can be explained by the variance in x

- ES interpretation is therefore consistent with R^2 interpretation (Dattalo, 2008)

- Inconsistent recommendations for which one to use
 - (η^2) is constrained by the size and magnitude of other effects
 - (η_p^2) is not additive
Types of Effect Sizes

- Phi (\(\phi\)) and Cramer’s Phi (\(\phi_c\)) or \(V\)

\[
\phi = \sqrt{\frac{x^2}{N}} \quad \phi_c = \sqrt{\frac{x^2}{N(k-1)}}
\]

- Standardized ES of association for the chi-square test
 - Can be squared to show how much shared variance is accounted for by the relationship detected by the chi-square

- Phi (\(\phi\)) used for 2 binary variables

- Cramer’s Phi (\(\phi_c\)) can be used with any number of levels

- Bounded between 0 and 1

- Interpreted like Pearson’s \(r\) and \(R^2\)
Types of Effect Sizes

- Cohen’s f^2

$$f^2 = \frac{R^2}{1-R^2}$$

- Standardized ES of the proportion of explained variance over unexplained variance

- Rarely reported (lacks intuitive sense) but frequently used in power calculations

- Can be used for multiple regression or ANOVA
Types of Effect Sizes

- **ES by Analysis Summary**
 - Correlation/Regression
 - r, R^2, Cohen’s f^2
 - Logistic Regression
 - Odds Ratios
 - Pseudo- R^2
 - Mean Differences
 - Cohen’s d, η^2, R^2, Cohen’s f^2
 - Crosstabs/Chi-Square
 - Phi/Cramer’s V
Magnitude of Effect

- Effect sizes are generally broken down into “small”, “moderate”, or “large”
 - What constitutes a small, moderate, or large effect depends on the type of effect size being considered
 - These terms are arbitrary and relational
 - These are guidelines, not cutoff values
 - Most often cited reference for magnitude of effect is Cohen (1988)
Magnitude of Effect

- For Pearson’s r, phi, Cramer’s phi
 - “small” ≈ 0.1
 - “moderate” ≈ 0.3
 - “large” ≈ 0.5
Magnitude of Effect

- For r^2, η^2, and η_p^2
 - “small” ≈ 0.01
 - “moderate” ≈ 0.09
 - “large” ≈ 0.25
Magnitude of Effect

- For R^2
 - “small” ≈ 0.02
 - “medium” ≈ 0.13
 - “large” ≈ 0.26
Magnitude of Effect

- For Cohen’s d
 - “small” $\approx \pm 0.2$
 - “moderate” $\approx \pm 0.5$
 - “large” $\approx \pm 0.8$
Magnitude of Effect

- Odds ratios
 - No specified criteria for categorizing magnitude
 - However...
 - Chinn (2000) \[d = \frac{\ln(OR)}{1.81} \]
 - Can substitute values of \(d \) to get \(\ln(OR) \)
 - And, \(e^{\ln(OR)} = OR \)

- “small” = 1.44
- “moderate” = 2.47
- “large” = 4.25

*note – if you choose to report this, you should provide appropriate references and explain your rationale
Magnitude of Effect

- For Cohen’s f^2
 - “small” ≈ 0.02
 - “moderate” ≈ 0.15
 - “large” ≈ 0.35
Magnitude of Effect Summary Table

<table>
<thead>
<tr>
<th>Effect Size</th>
<th>Small</th>
<th>Moderate</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson's r</td>
<td>0.10</td>
<td>0.30</td>
<td>0.50</td>
</tr>
<tr>
<td>r^2</td>
<td>0.01</td>
<td>0.09</td>
<td>0.25</td>
</tr>
<tr>
<td>η^2</td>
<td>0.01</td>
<td>0.09</td>
<td>0.25</td>
</tr>
<tr>
<td>R^2</td>
<td>0.02</td>
<td>0.13</td>
<td>0.26</td>
</tr>
<tr>
<td>Cohen's d</td>
<td>±0.20</td>
<td>±0.50</td>
<td>±0.80</td>
</tr>
<tr>
<td>Phi/Cramer's V</td>
<td>0.10</td>
<td>0.30</td>
<td>0.50</td>
</tr>
<tr>
<td>Cohen's f^2</td>
<td>0.02</td>
<td>0.15</td>
<td>0.35</td>
</tr>
<tr>
<td>Odds Ratio</td>
<td>1.44</td>
<td>2.47</td>
<td>4.25</td>
</tr>
</tbody>
</table>
Effect Size Conversions

• Cohen’s d is the most widely reported (and presumably understood) effect size

• It is possible to convert many ES to Cohen’s d
Effect Size Conversions

- Calculating Cohen’s d from...
 - Correlation
 \[d = \frac{2r}{\sqrt{1-r^2}} \]
 - Chi-Square
 - $df = 1$
 \[d = 2\sqrt{\frac{x^2}{N-x^2}} \]
 - $df > 1$
 \[d = 2\sqrt{\frac{x^2}{N}} \]
 - Odds Ratio (Chinn, 2000)
 \[d = \frac{\ln(OR)}{1.81} \]

* See Dunst, et al. (2004) for a more comprehensive list of conversion formulas
Practical Significance

- So we have an ES, we know the magnitude of the effect, and we know whether or not the inferential test it is based on is statistically significant – now what?

 - Mordock (2000) suggests that we have to make a value judgment about the ES
 - Is it important?
 - Is it feasible?
 - Is it practical?
Small Effect Sizes

“Small effect sizes can have substantial practical value. This is particularly the case if a treatment is relatively inexpensive, is easy to execute, is politically feasible, and can be employed on a large scale, thereby affecting large numbers of individuals.” (Litschge, Vaughn, & McCrea, 2010, p. 22).
Reporting Guidelines and Trends

- Reporting effect sizes has three important benefits (APA, 1999):
 - Meta-analysis
 - Informing subsequent research
 - Interpretation and evaluation of results within the context of related literature
Reporting Guidelines and Trends

- What to report (APA, 2010):

 ◦ Type of effect size

 ◦ Value of the effect size (in original units, such as lbs. or mean difference on a scale, and/or ES statistic)

 ◦ Magnitude of the effect size

 ◦ Interpretation of the effect size

 ◦ Practical significance of the effect size
Examples

Using online calculators:
http://www.uccs.edu/~faculty/lbecker/
http://faculty.vassar.edu/lowry/newcs.html

Examples from calculations used in forthcoming article:
Example 1 – Cohen’s d

Difference between two types of group care on length of stay in placement

Effect Size Calculators

Calculate Cohen’s d and the effect-size correlation, r_{YX}, using --

- means and standard deviations
- independent groups t test values and df

For a discussion of these effect size measures see Effect Size Lecture Notes

Calculate d and r using means and standard deviations

Calculate the value of Cohen’s d and the effect-size correlation, r_{YX}, using the means and standard deviations of two groups (treatment and control).

Cohen’s $d = M_1 - M_2 / \sigma_{\text{pooled}}$

where $\sigma_{\text{pooled}} = \sqrt{\frac{(SD_1^2 + SD_2^2)}{2}}$

$r_{YX} = d / \sqrt{(d^2 + 4)}$

Note: d and r_{YX} are positive if the mean difference is in the predicted direction.
Example 1 – Cohen’s d

Difference between two types of group care on length of stay in placement
Example 1 – Cohen’s d

Difference between two types of group care on length of stay in placement

Effect Size Calculators

Calculate Cohen’s d and the effect-size correlation, r_{YX}, using --

- means and standard deviations
- independent groups t test values and df

For a discussion of these effect size measures see Effect Size Lecture Notes

Calculate d and r using means and standard deviations

Calculate the value of Cohen’s d and the effect-size correlation, r_{YX}, using the means and standard deviations of two groups (treatment and control).

$\text{Cohen’s } d = \frac{M_1 - M_2}{\sigma_{\text{pooled}}}$

where $\sigma_{\text{pooled}} = \sqrt{\frac{(n_1 - 1)\sigma_1^2 + (n_2 - 1)\sigma_2^2}{n_1 + n_2 - 2}} / 2$

$r_{YX} = d / \left(d^2 + 4\right)$

Note: d and r_{YX} are positive if the mean difference is in the predicted direction.
Example 2 – Cramer’s phi (V)

Association between type of care and likelihood of new arrest 12 months post-discharge
Example 2 – Cramer’s phi (V)

Association between type of care and likelihood of new arrest 12 months post-discharge
Example 2 – Cramer’s phi (V)
Association between type of care and likelihood of new arrest 12 months post-discharge
Example 2 – Cramer’s phi (V)
Association between type of care and likelihood of new arrest 12 months post-discharge
SAS and Effect Size Calculations

SAS will automatically output values for phi and Cramer’s V in chi-square analyses:

```sas
proc freq;
  table var1 * var2 / chisq;
run;
```

And for the values of r and R^2 in correlation or regression analyses:

```sas
proc corr;
  var1 var2;
run;
```

```sas
proc reg;
  model y = x1 x2...xk;
run;
quit;
```

Also, for odds ratios in logistic regression analyses:

```sas
proc logistic descending;
  model y = x1 x2...xk;
run;
```

SAS will NOT output values for η^2 (does give sums of squares to simplify hand-calculations)
ES can be obtained through syntax or “options”

- r and R^2 automatically provided in regression
- Odds ratios automatically provided in logistic regression
Phi and Cramer’s phi (V) can be selected as part of the output
- “Descriptive Statistics” -> “Crosstabs” -> “Statistics”

η^2 can be selected as part of the output
- “General Linear Model” -> … -> “Options”
SAS and SPSS

- Cohen’s d
 - Cohen’s d, Glass’s Δ, Hedge’s g can be calculated using SPSS syntax, available at: http://www.spsstools.net/Syntax/T-Test/StandardizedEffectsSize.txt.
 - Cohen’s d can be calculated in SAS via a somewhat complex process
 - Hand calculation is, for the moment, simpler

- Additional syntax (Meyer, et al., 2003) for this and other processes for calculating effect sizes in SAS and SPSS is available at: www.tandf.co.uk/journals/authors/hjpa/resources/basiceffectssizeguide.rtf.
Effect Size and Power Calculators

- G*Power 3
 - Covers all of the major types of ES
 - http://wwwpsycho.uni-duesseldorfdede/abteilungen/aap/gpower3/

- Optimal Design
 - Developed for hierarchical models
 - http://sitemakerumichedu/group-based/optimal_design_software

- StatPages
 - Provides links to more than 400 online statistical calculators
 - http://statpagesorg/

Contact Information

Philip Osteen, PhD
University of Maryland
School of Social Work
525 W. Redwood St.
Baltimore, MD, 21201
410-706-3612
posteen@ssw.umaryland.edu

Charlotte Bright, PhD
University of Maryland
School of Social Work
525 W. Redwood St.
Baltimore, MD, 21201
410-706-3605
cbright@ssw.umaryland.edu